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SCF TREATMENT OF HIGHER EXCITED STATES OF ATOMS.
TRANSITION PROBABILITIES BETWEEN EXCITED STATES
OF Si II*
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Institute of Physics, Jagellonian University, Cracow
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A nonrelativistic SCF method for higher excited states of atoms has been developed with
orthogonality constraints for states of the same symmetry. The two-by-two rotation method
was adapted for this purpose, where the mixing of subshells replaces mixing of orbitals.
This method was applied to several states of Sill. Oscillator strenghts of transitions between
ns and n’p states for n, n’ varying from 4 to 7 were calculated.

1. Introduction

The problem of calculating the wave functions for higher excited states of a many
“electron atom is associated with some nontrivial technical difficulties. To solve the problem
several methods have been developed. Very useful and simple are semiempirical methods,
like the method of Weinstein [1] and its extensions [2]. On the other hand, we have the
ab initio treatments which are better grounded physically. The most sophisticated ab
initio treatments are based on the configuration interaction (CI) [3]. However, a large
scale configuration interaction is (because of the slow covergence) tiresome and expensive,
and a very limited one might again be insufficient. For this reason there is increasing
interest in SCF-type calculations for excited states, with eventual improvement of the
excited state by a configuration interaction. It has been shown that such an improvement
is easy to perform [4]. In fact, the SCF treatment of excited states can even interchange
the order of the states when compared with results of CI limited to a few configurations [5].
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The SCF treatment developed in this paper is based on Rossi’s two-by-two rotation
method [6]. Instead of mixing pairs of orbitals, however, we are going to mix occupied
and virtual subshells of the same /. Subshells are mixed as long as a minimization of the
total configuration state energy is achieved, up to a threshold. Because of mixing subshells
rather than orbitals, the formalism of the Rossi method had to be slightly changed.

2. Method

The average configuration state energy is rotationally invariant. For this reason
atomic orbitals have the familiar form here

1
7 Rnl(r) Ylm(d5 (p)’

with a hydrogenlike angular part. The purpose of the SCF treatment is to find the optimal
radial part R, of each occupied subshell #/. In this work we asume the analytical approxi-
mation, expressing radial parts by linear combinations of Slater functions

N
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t=
where
@(r) = 1" exp (—a,r). (2

Slater-type expansions are known already for many atoms and ions, at least for the
case of the ground state. In the case of Sill, for example, the appropriate expansion has
been by Clementi [7]. Radial parts of Is, 25 and 2p subshells are expanded there into three
such terms whereas those of 3s and 3p into two terms. When dealing with excited states
we must introduce new terms of type (2), optimizing the exponent g, variationally or
estimating it with the help of a physically sound model. It was found satisfactory in this
work to estimate a, from the familiar Rydberg formula, according to which

i me*Z%,  me*a, 3)
"7 2h%2 T 2K

The ionization energies were taken from the tables of Moore [8].

The set of radial parts obtained in this way is not orthogonal. For this reason the
radial parts were orthogonalized with the help of the Schmidt procedure [9]. In this pro-
cedure one starts with ground state orbitals (one orthogonal to the other) and adds the
excited state orbitals, one at a time, in the order of increasing energies. Discussing Sill
up to 20 Slater-type functions were used, constructing in this way the starting radial parts
of subshells 1s—11s and 2p—11p.



245

For any given electronic configuration of an atomic system the energy in the
independent particle approximation is [10]

E = Z N,,ZI,,,-I-% Z [Ofk(lhlp nzlz)Fk(”xa Ly ny, L) = By(nyly, nzll)Gk(”la Iy, ny, lz)]’ “4)
n,l

ny,ly,
nz,la,

where N,; is the number of electrons in the subshell nl,

N d? I+ Zz
I; = JRnl(y) [—%W + _ZV—ZM - T:I Ry(r)dr, &)
0
X r re 2 2
Fi(ng, I, ny, 1) = I Ry (ro)R;,,(ry)dr dr,, (6)
g >
k rs -
G'(ny, 1y, ny, 1) = rle Rml;(rl)anlz(rl)le1(r2)anlz(r2)dr1era (7N
0

and where all values are defined in atomic units. Coefficients o, and B, are connected
with angular parts of orbitals and of the interaction operator. They can be expressed
as follows [10]

ak(nilla n212) = 5k0Nn1l1anlz (8)
Bl mylyy = NNt o ©)
A R Tl + 1) 2L+ 1) 2

The coefficients ¢,, (1) are the linear variational parameters. In the SCF procedure
we always started from the functions found by Clementi for ground state orbitals and
that for the appropriate orthogonalized exicted state. Then, following the idea of Rossi,
radial parts of two different subshells of the same / were mixed, in order to gain a decrease

in energy
Ry \ _ [ cos6;; sind; lei

(R,’,j,j> B <—sin 0:; cos 0;;)\ R, )’ (10)
where /; = ;. The mixing was carried out in steps, each mixing involving one of the partly
or fully occupied subshells with a virtual one. By virtual subshells we mean here all sub-
shells with the energy level above the excited orbital level first discussed; in this way the
mutual orthogonality of all excited states and the ground state is guaranteed somehow
automatically. Owing to this restriction on mixing the lowest possible estimate of the

excited state energy is not necessarily obtained. It was found, however, that the most
significant part. of relaxation of the orbitals is included in this way, both of core orbitals
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and the excited one, particularly when dealing with one electron outside a closed-shell
core.
The mixing angle 6;; follows from the condition of minimum of energy (4)

FEG) _
00

i

(1)

The appropriate expression is fairly complicated. However, its derivation is straight-
forward; it suffices to consider in equation (4) the derivatives of all I,;’s, F¥(ny, I, n,, L,)'s
and G*(n,, l,, n,, [,)’s with respect to 0;;. For this reason the detailed expression for this
derivative is not given in this article.

3. Iteration schemes

Solution of the set of equations (11) for all possible mixing agles simultaneously,
is the bottleneck of the treatment, being the most time consuming part of the SCF scheme.
For this reason three different iterative schemes had been considered in this work.

In scheme I all possible mixings had been considered in a preliminary discussion and
finally that one which yielded the largest decrease in energy was selected. For this pair
of subshells the mixing of the radial parts had been performed. The procedure was then
repeated again and again until, for each type of subshells (s, p, etc.) separately, selfcon-
sistency was achieved.

In scheme II the steepest descent method was applied, in the formulation given by
Garton and Sutcliffe [11]. Suppose that 6;; is the mixing angle of radial parts R,,(r)
and R, (r), and that we are discussing the hyperspace spanned by all possible angles 8;;.
In this scheme the negative derivative

JE
- (—* ) (12)
09:;/0:5=0 ‘

is the component of a gradient showing the expected direction towards the minimum of
energy (a component of a generalized force).

In scheme ITI not the force itself was the criterium of the degree of mixing, but rather
the possible lowerings of energy in the independent treatment. Now, if

G,; = sin 67 (13)

ij>

where ()?j is the mixing angle optimal for the independent mixing of R,; and R,
then

;lﬂi . (1+Aﬂ‘2 Z Gizj)-%(Rnili-i_A Z Ginnjlj)7 (14)
J

J
(=9 (>

where A is a variational parameter. As in the former schemes /; = /; for all j’s.
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It may happen (in the case of schemes Il and I1I) that new orbitals cease to be orthog-
onal to one another. In such a case they are orthogonalized symmetrically by the Léwdin
orthogonalization procedure [9] which keeps the orbitals unchanged as much as possible.
Virtual orbitals are then reorthogonalized (in scheme II and I1I) by the somewhat simpler
Schmidt procedure. The final value of E,;, is then calculated, based on the reorthogonalized
orbitals. The procedure is repeated again and again until the gain in energy in a single
step is negligible.

The method described was applied to excited states 4s—7s and 4p—7p of Sill. In
test calculations it was found that scheme 1II is definitely the fastest one and the steepest
descent scheme II the slowest one. For this reason scheme I1I was exclusively used in
all subsequent calculations.

4. Results and discussion

In Table I the calculated and observed excited state energies are compared with each
other, relative to the ground state. As follows from the table, agreement of the presented
SCF-type calculations with experiment is satisfactory on the order of 0.01 a.u. The remaining

TABLE 1

Values of energy of excitation for Sill in a. u.

Energy level Our results Moore

3p 0.0 ’ ’ 0.0

4p 0.361 | 0.369
5p , 0.459 0.472
6p 0.504 ' 0.519
T 0.528 —
4s 0.290 0.297
5s 0.432 0.455
6s 0.490 0.506
s 0.520 0.536

discrepancy is evidently due to unballanced changes of the correlation energy in the ground
state and the appropriate excited state.

Table II contains-a set of oscillator strengths (in the dipole moment and dipole velocity
approximation) and appropriate life times. The calculated values are compared where
possible, with scanty experimental data and with results of other calculations.

It is hard to draw decisive conclusions from this comparison. The agreement with exper-
iment is certainly not worse then the scatter in experimental data and the results obtained
in the dipole moment approximation are similar to those from the dipole velocity approxi-
mations. Where CI values have been reported (for 3p — 4s, 3p — 55, 4p — 4s), they are
usually close to those calculated in this work. It is somewhat interesting that in general
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Transitions
3p—ds
3p—35s
3p—6s
3p—1Ts

4p — Ss
4p — 6s
4p —Ts
5p — 6s
Sp—1s
Ip—1Ts
4s —4p
45— 5p

Oscillator strenghts for Sill

Our results

dipole moment
dipole velocity

0.651

0.66€

0.0049
0.0015

gnlfuinr

Other results

(see Ref.)
0.651 [3]
0.678 [2]
0.779 [12]
0.127 |3}
0.0966 [2]
0.0345 [2]
0.0168 [2]
1.561 [14]
1.442 [2]
1.51 [15]
1.32 [16]
0172 [2]
0.150 [17]
0.0599 |2}
0.228 [17]
2.71 [3]
2.662 [2]
2370 {15]
3.0 [20]
0.000228]2]

CI

TABLE II

semiempirical

exp.

CIL

sém.

sem.

sem.

HF

sem.
exp.
exp.

sem

CA (Coulomb appr.)

sem.

SE€m.

eXp.

exp.

sem.
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TABLE II (continued)

Enifuin'r

Transitions Our results

Other results
) (see Ref.)

dipole veloéit;

( dipole moment

4s — 6p 0.00000842
0.000352 | 0.00112 [2] sem.

4s —7p | 0.0000896
| 0.0006238 .
55— 6p | 3.5005 ‘
3.3679 |

55— 6p 0.0103 |

! 0.0085
— — - — | — — ——
55— 7p 0.000209 '
0.000016

6s — Gp i 3.970

[ . 4.790

65— Tp | 0.06615
0.01594

s —Tp 5.492
4.481

also a good agreement exists between the presented ab initio calculation and the simpler
semiempirical one reported by Migdalek [2]. A more serious discrepancy appears only
in the case of vanishingly small oscillator strengths like for transitions 4s — 5p, 45 — 6p
and 4s — 7p. It is difficult to say, at the moment, which of the results agree better with
experiment because of the lack of appropriate data. With regard to the life time, it is
practically within the experimental error in the case of the 4s excited state. In the case of
the 3p — Ss excitation, on the other hand, the experimental value is roughly half of the
calculated one. ' v

In many other cases neither theoretical nor experimental values exist with which
one can compare. In all these cases the present work gives a first estimation of appropriate
oscillator stengths and the life-times.

The author is greatly indebted to Professor A. GOI@bi_ews_l;i for helpful discussions.
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TABLE Il
Life times for Sill
| T % 1072 sec
Level Our_résuﬁ 1 o B o N -
eve . Other results
dipole moment {sce Ref.) Method
dipole velocity
4s | “1.13 ‘ 1.5 +£0.3 [13] exp.
111 | 09 +0.2 [12] | exp.
1.0 [2} sem.
= — - = = = — | -
5s | 2.337 0.97+0.2 [13] exp.
2.417 |
6s 4.136 ‘
| 4,172
e B |
|
Ts 9.307
| 9.300 ‘
4p | 4.588
5.419
_—— | |
» o 268
25.52 |
6p | 83.29 ‘
| 69.40
p | 132.2 |
170.4 |
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