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A relativistic pseudopotential, which is an /-dependent correction to the Schrodinger
radial equation, has been derived for systems with spherical symmetry. The resulting energies
and the asymptotic behaviour of the wavefunctions are correct up to «* The pseudopotential
may be applied in a straightforwatd way in atomic SCF and in molecular Xo SW calcula-
tions.

1. Introduction

The relativistic corrections to the Schrédinger Hamiltonian are, in general, introduced
through an expansion of the Dirac Hamiltonian in terms of powers of the fine structure
constant «, and subsequent elimination of the small components of the Dirac wavefunction
[1]. The resulting equation, containing terms up to o> and known as the Pauli equation,
is then treated perturbationally considering the term proportional to «? as the first order
perturbation. This kind of approach leads then to corrected values of energy, but the
wavefunctions remain uncorrected.

Recently some work has been done on the problem of introducing the Pauli terms to
the differential equation in order to obtain improved wavefunctions [2-4]. Main difficulty
connected with this kind of approach is due to smgularmes stronger than 1/r? appearing
in the spin-orbit and Darwin terms. Using effective operators which are defiried to reproduce
certain features of the exact relativistic solutions is an alternative method for introducing
relativistic corrections to the wavefunctions [5]. In the present paper we derive a relativistic
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pseudopotential for one electron in a central field. The form of the pseudopotential is
obtained from the requirement of a reproduction of the relativistic energies and the asymp-
totic behaviour of the radial wavefunctions up to the terms proportional to «*. The resulting
formulae are directly applicable in atomic SCF and molecular XaSW calculations.

2. The hydrogen-like atom

The Schrodinger radial equation for a single electron moving in a Coulomb field
has the form

a> i+ 2z ,
— — ——5— + — +2E; | R(r) =0, M
dr r r )

where [ is the angular momentum quantum number, Z — the nuclear charge, and E, — the
nonrelativistic energy. Let us consider a differential equation of the same form, i.e.

d? s(s—l,)+2z sallms - g 5
di"z rzﬁ 7 (7‘)—— » ()
with s, z, and D to be determined. The asymptotic form of R(r) is
R(r)~exp(—=Dr), D>0 3
if r— oo and _
RO~ ', 130, (4)

where t = s or t = 1 —s, if r » 0. Hence, values of s and D may be determined imposing
a requirement upon the asymptotic behaviour of the solutions of (2). In particular, if

D? = —EQ+0%E) )

where E is the Dirac energy of the electron, then the asymptotic form (3) of R(r) is the
same as in the case of the radial solutions of the Dirac equation [1]. The parameter s
determines R(r) for r — 0. In the case of the Dirac wavefunction 7 = (k2 --0222 )2, where
k = e(j+1/2). Here ¢ = +1, and j = [+¢/2 is the total angular momentum .quantum
number. In the nonrelativistic limit «2Z?2 is neglected compared to unity, so that 7 = I+1

ife=1and ¢ =1if e = —1, while for the Schrédinger equation ¢ = [+ | in both cases.
In order to assure the proper limit of R(r) for « — 0 and r — 0, we put
s = k(1 —o2Z3/k?)V2, (6)

The solutions of (2) are regular at the origin if # = s in the case ofe = landift = L—s
in the opposite case, i.e. t = (1—8)/2+|s|.

If R(r) is a bounded solution of (2), then the energy of the corresponding state is
determined by the condition:

D¥(n,+1) = 2, )

where the radial quantum inumber‘n, =0, 1, 2, ... is equal to the number of nodes in

R(r) [1]. In addition to n, it is customary to define N = n,+(1+e)/2. If we put
z = Z(1+02E) (8)
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then, according to (5) and (7),

. v 1 / aZ 2\ —1/2
EZ?[O+(N+M>> ‘4} ®

i.e. 1s identical with the Djrac energy of the electron. If D, s and z are determined by Egs.
(5), (6), and (8). then Eq. (2) becomes
l:d2 I(l+1) 22

P 2 + - +2E+o*W(r, E)J R(r) =0, (10)

where

war By = (£+ 2 = <[ \/1 wz? 1
d“)“<‘*7)‘;ﬁ[” ‘?T] (

is the effective relativistic correction.
To give an interpretation of W(r, E), let us assume that Zo < 1. Then

Z\N? 1 /Z\ )
We(r, E) = <E+ —) - -(—) +0(2?). 12)
r 2k\ r

The first term is the mass velocity correction, the second one is an effective potential
replacing (if / # 0) the spin-orbit and (if / = 0) the Darwin terms. It is interesting to
note that the expectation values of the second term, in the basis of the hydrogenic non-
relativistic orbitals, are the same as the expectation values of the spin-orbit and Darwin
operators.

3. One electron in a central field

The radial functions describing electrons in atoms are solutions of the SCF equations
which are of the same form as Eq. (1), except the Coulomb attraction term —Z/r being
replaced by a potential function ¥(r). We assume that .the potential has the form

VA
V(r)=— Tf("), (13)
where f(r) has no singularity and for r — o, f(r) approaches to a constant value. Eq. 2)

with the condition (8), accepted by analogy with the case of —Z/r potential, takes the
form

5 :
dr- r?

[d W=D o E— Dz:l R(H) = 0. (14)

The parameter s, determining the behaviour of R(r) for r — 0 is now

o
. 5, = k J 1— “kf 10y . (15)



240

Substituting (15) and (5) and assuming that oZ < 1, Eq. (14) yields

2 I+ . by
[(;l_;j S —2V(r)+2E+a"W(r, E)} R(r)y =0, (16)
where
W(r, E) = (E—V(r))*~ Zik V({r)* +0(c?). a7

The effective potentials (12) and (17) lead to a spin splitting of the orbital energies.
Eq. (16) may be written as

[h%(r, E4)+ha(m]R.(r) = 0 (18)

where /9 is the k-independent part of the operator acting on R(r) in (16), E . and R are
the orbital energies and the radial functions corresponding to j = I+ 1/2, respectively,

2
K = —V(r)? S (19)
2(1+1)

and
2

k 2 & )
he = V(r) E ) (20)

In some cases it is convenient to neglect the spin splitting of the orbitals, e.g. when
one wants to introduce in a simple way the relativistic correction to an existing nonrelativ-
istic SCF programme. For this purpose one may define an averaged operator for a shell I
of equivalent electrons. Let, respectively, n. and n_ be the number of electrons for which
j=1+1/2 and j = I-1/2. Then we define the averaged operator as

_ 1
h=h+ " (n b5 +n_h*). (21)

Using (19) and (20) we obtain

h ==L V() e, (22)
where
1 /n, n_
g) = — (74-_1 - 7) . (23)

In the special case of a closed shell (n, = 2/+2,n_= 20), Eq. (23) gives g(/) = 0 if
[ # 0, and g(0) = 1.

The derived formulae for the relativistic pseudopotential may. easily be introduced
to any programme solving a radial Schrédinger equation. In particular they may be applied
in the Hartree-Fock or Hartree-Fock-Slater calculations for atoms and in the SCF )’(a
Scattered Wave calculations for molecules.
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