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SOME CRITICAL PROPERTIES OF A THREE-DIMENSIONAL
SYSTEM OF RANDOMLY MIXED HEISENBERG AND ISING
BONDS*
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Institute of Theor_e_tic_:al Physics, University of Wroclaw**

( Received November 15, 1977)

Using the high temperature series expansion method, the three-dimensional system
of randomly mixed Heisenberg and Ising bonds is considered. The dependence of critical
temperature and susceptibility critical exponent ¥ on concentration of ‘Heisenberg-type
bonds is found to be continuous. The crossover exponent is estimated.

In the previous papers [1, 2] we have investigated some ¢ritical properties of a random
mixture of two kinds of bonds: isotropic Heisenberg-like and anisotropic. Ising-like.
Using the high temperature series expansion method we have calculated five terms in the
susceptibility series for the square lattice. From those series we have been able to estimate
the dependence of the critical temperature and the susceptibility index y on the concentration
of one kind of bonds. In this note we present a continuation of the previous. investigations
for the case of two three dimensional lattices, the b.c.c. and's.c. Since the physical mechanism
responsible for the considered system is the same as before, and the method -used here
is the same as that employed in [1 2], we refer the reader to [1, 2] and references cited
therein for all the details.

The coefficients of the susceptibility series for the b.c.c. lattice and arbitrary spin are

a, = 16/3X4,,
a, = 1/45{X*[11204% + 64u,]— X [1204, +481,]},
= 1/675{X>[7840043 — 240044, + 8160411, + 144015 + 864y,
— X?[168004, 4, + 67204 1, + 96025 +576p5]
+ X[9604; +96u51},
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Poland.
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a, = 1/14175{X*[75219204} — 47040043 4, + 109760043 1, + 2822404, 4,
+ 1693444, i — 1075204 + 241922, 1, -+ 29568113 + 345611, ]

— X3[806404% +239120043 4, + 94080043 1, + 1713604, 4
+ 1128964, 1, — 2520042 + 132048411, + 7459212 -+ 5376047 +252001, + 662411,

+X?[1881604 43+ 188164, pt3 + 17640043 + 1505282, 1,
+39312u2 +252001, + 39844, ]

— X[126004, +7201,]},

as = 1/297675{X°[7183321604] — 747936004315+ 1379651844311,
+7056004 42 — 13735684 A5 + 63253124, 143
+4148928042 2, + 24893568 A3 5 — 4233604, 45 — 8467201, 45
—2032128, 15 + 9072004515 — 2116804 A, -+ 6350404 11,
+223534084 A, A, —255897604 2% +1016064043 1,

+ 745113634, + 9072015 + 3888045

— X*[1354752043 + 196000000434, + 90316804, 11 + 12166425643 1,
+24366720424; + 1659571243115 — 131712004, A3
+185274884 3,11, + 158618884, 13 + 3308229124, 4, Aoty
+47980804, 2, + 1270080/ ; p14 + 46569601, 45 + 25401601, 113
$4233600 515 + 45158441525 + 1105753604,43 + 1102743044,

+ 18144025 +77760us]

+ X?[407484004 A2 + 524543044 A1, + 83825284 + 26836320474,
+2765952A42 11, 4+ 47980804 A4+ 7761604, p1y + 72817924 Ay Aoty
+677376 431, + 44805604, 45 + 15523200, 415 +23284804,4,

+ 12559684515 + 39513604,43 -+ 2427264443 + 53222445
+64800u5]

— X?[2469600/ A, + 1411204 , 1, + 49392004, 4,5 +282240u, 15
+ 196862411525 + 296352455+ 5261765 +25920p5]

+X[19353645+4320u5]},

where

X:=S(S+1), A:=pU", = 1-p Y,



and
Ay i= Ay +py.
For the s.c. lattice the coefficients are
a; = 4X4,,
a; = 1/15{X?[2004% +16p,]— X[304, +12u,]},
as = 1/225{X3[1000043 — 6004, + 140041, + 36045 +216p5]

— X?[30004, 1, + 12004, p1, +240; + 1441,]

+ X[2404; +24p51},

a, = 1/4725{X*[686560AF — 84000434, + 50400445+ 128800474,
4302404 , i — 89604 + 33604, +4960u3 +864u,]

— X*[67204% + 301000434, +294004, 45 + 117600471,
+201604 15 + 448045 +222604, 11, + 1308043 + 16561,

— 630023 + 63004, ]

+ X?[336004, 43 + 33604 st + 268801, + 3150043 + 63004,
+702042 +99611,]

— X[31502, +180x,]},

%5 = 1/99225{X 5[4686752045 — 9290400431, + 1127235243, + 1764004 13
+39984004 , 2,1, + 6692004 , 2 + 529200043 5 + 317520043 115
+1103764,p1y — 529204, 2, — 16307204, A{ — 1058401,
+1199520p1, A5 — 3810244445 + 22075241, 15 + 611226413
+8467204,43 + 18336784, 4, A, +2268045 +97205]

— X*[7526404% +5017604,41 + 17326400431, + 107345284311,
—23520004, 2 + 18648004, 13 — 26656004 1 A, 1, + 294000043 4
+21168004 2115 + 8467204, A + 2247844 p1, + 30077376 A1 A1 Az 114
+ 10050880431, +9768640u3 1, +8114404,45 + 449568115115
+ 169344413 -+ 3486011,43 + 4536045 +19440u;5]

+ X3[50715004 ;42 + 10332004 i + 47334004 A, 1, + 3381000434,
+352800A43 115 + 8467204, A, + 138264414 + 6068164, 412,441
47673404, A5 + 3104644, 115 +404040u, 7.3 + 276528, 113
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+32928043 4, + 9408043 4, -+ 56448431, + 13305645 + 162005]
~ X?[4410004 44 +252004 1 1 + 882000423 + 705604515
+351540,4 3 + 50400p, 15 + 13154415 + 6480p5]
+ X[483845+10805]}.

Using the ratio method (see e.g. [3]) we can estimate the dependence of the critical .tempera-
ture on the concentration p of Heisenberg-type bonds, and-then from -the formula [4]

Vo = AEY

1

—~n+1

‘TABLE I

kT./J as a function of concentration p'cf 'Héisenbérg-type bonds for the b.c.c. lattice, S = 1.and different

values of constant couplings

P JAogle (=1, JI=2 08 =2 =1 [JH=5 =1 |/H=1J1=5

0 9.032 18.064 9.032 . 9.032 45.161

0.1 8.946 , 17.136 9.673 11,932 41.652

0.2 i 8.856 16.204 10.326 14.830 38,140

0.3 8.762 15.266 10.984 17.711 34.624

0.4 8.662 14.320 11.640 20,582 | 31.104

0.5 8.552 13.362 12.287 23.461 . 27.575

0.6 8.428 12.385 12.920 26.359 ' 24.034

0.7 8.284 11.373 13.537 29.280 20.467

G.¥ 8.111 10.300 14.134 - 32223 | 16.836

0.9 7.899. 9.103 14.711 35.188 12.983

1.0 7.634 7.634 15.268 38.171 7.634
TABLE II

kTl Jese as a function of concentration p of Heisenberg-type bonds for the bic.c. lattice, S =1 and
different values of constant couplings. Jege: = J [p(JYN+(1 —p)(._)"/J)]

» H=1,7'=2 | M=2J=1 JH=1, J1=5 | JA=5 J'=1
' = -
0 9.032 9.032 9.032 9.032
0.1 ' 9.019 8.794 9.055 8.523
0.2 9.000 8.605 -9.081 8.239
0.3 8.900 8.449 9.112 8.050
0.4 8.950 8.314 9.148 7.916
0.5 8.908 8.191 9.192 7.820
0.6 8.846 8.075 9.244 7.753
0.7 8.748 7.963 9.303 7.705
0.8 8.583 7.852 9.353 ' 7.672
0.9 8.275 7.743 9.274 7.650
1.0 7.634 7.634 7.634 7.634
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where r, = a,/a,,, and y is the limit of the sequence {r,}, the same dependence for the
susceptibility expeonent. y can be obtained. The results are presented in Tables I
and II and Fig. 1 for b.c.c. lattice and spin § = 1. Qualitative behaviour for other
spin values and the s. c. lattice is similar. In Table I the dependence of critical tem-
perature (reduced by J) on the concentration p of Helsenberg-type bonds in shown. In
Table II we have the same dependence but the critical -temperature is divided by
Jge: = J[pJYJ+(1—p)JYJ]. Figure 1 gives the change of the susceptibility index y
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Fig. 1. Critical index y vs concentration p of Heisenberg-type bonds for the b.c.c. lattice and § = 1.
L—Jo =5 JY =1, 2—JY =2, JYJ=1; 3—IN7=J0YT=1; 4—J%I=1,. JYJr=2;
S—IY =1, 0Y7=5

with p. As can be seen from these data, the change from Ising-like values of T, and
y (p = 0) to the Heisenberg-like ones (p = 1) depends strongly on the coupling cons-
tants ratio. This change is nearly uniform over the whole range of p for J'=J% and
is more rapid in the small p region for J¥ > J', and in the large p region for J' < JH,
The local minimum in the y vs p curve around p = 0.1 (for J¥ = 5J%) seems to be an
artifact connected with the shortness of the series, as for shorter series (4 terms) this
minimum is deeper. On the other hand the minimum of y for J' = 5J% changes but
slightly when one term in the series is added. Therefore, the random mixture of Heisenberg
and Ising bonds (whlch for 0 < p < 1 corresponds to neither Heisenberg nor Ising systems)
differs from the mixed Heisenberg-Ising models [5,6] where the transition from one
sys-um: to another was sharp, i.e. as long as there was anisotropy the value of critical



28

exponent y remained practically fixed at its Ising (anisotropic) value, and changed discon-
tinuously when the system became isotropic. General behaviour of the random system, i.e.
its smooth transition from an anisotropic (p = 0) to isotropic (p = 1) cases is the same
in two and three dimensions. Let us stress that the differences in critical properties of
mixed and random system are not surprising. Apart from pure Heisenberg and Ising
models, which are of course the same in both systems, in the mixed one all bonds are
always anisotropic with only degree of anisotropy varying, whereas the random system
is composed of isotropic and anisotropic bonds and it is impossible to predict at what
concentration of, say, anisotropic bonds the system will show overall anisotropic be-
haviour.

For the two extreme homogeneous systems the series obtained here are identical
with those given by Van Dyke and Camp [7] and Rushbrooke et al. [8] for Ising and Heisen-
berg models, respectively. Numerical values of the critical temperature and critical
exponent y for the two pure models obtained in this paper for the b.c.c. lattice and S = 1
are equal kT,/J = 7.634,y = 1.396 for the Heisenberg model and k7,/J = 9.032,7 = 1.181
for the Ising model. This agrees well with the value given by Rushbrooke and Wood [9]
for the Heisenberg model, k7/J = 7.6020. For the exponent y usually a value between
1.405 and 1.375 is adopted [6]. The critical temperature for the b.c.c. lattice and spin S = 1
for the Ising model has, to the best of our knowledge, never been published. The critical
exponent y is believed to be equal 1.23 [6].

For the two dimensional system the divergence of the susceptibility at p = 1 was
identified with the Stanley-Kaplan singularity, which gives spin-dependent Tg. In three
diemensions there is no Stanley-Kaplan singularity, hence both 7, and y for p = 1 should
be independent on the value of the spin. This indeeed is the case. The existing difference
of the order of 0.05 for y can be attributed to short series.

Additionally, we calculated the values of the crossover exponent & from the formula [10]

b = (k 1+5)|: by, 1:] A _<dlna,‘)
y by ’ ¢ d(1-p) (1-~p)=0

where J is a fitting parameter. To obtain ¢ from ¢, again the ratio method has been
used. We found that ¢ depends rather weakly on the coupling constants ratio, for we
have (for the b.c.c. lattice)

¢ = 1.180+0.055 (6 =0.1) for J' = J¥
¢ = 1.210+0.025 (6 = 0.1) for J' = 2J¥
¢ = 1.175+0.06 (6 = 0.1) for 2J' = J".

Since to determine ¢ we have only five terms in the susceptibility series, the above values
are only rough estimates. They differ, however, significantly from the value obtained for
the square lattice in the same approximation ¢ = 2.15 [2]. This agrees with a common
belief that ¢ should be of the order of y, and in two dimensions greater value of ¢ could
be connected with the large value of ygx for the Stanley-Kaplan singularity.

The author is grateful to Ms Joanna Pekalska for her help in numerical calculations.
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