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The influence of a single screw dislocation in the crystal on the density of magnon states
in the band bottom region is considered. The physical counterpart of the situation under
consideration is to be found in whiskers. The dislocation is dealt with as a deformation of
the lattice in the entire volume of the crystal, its influence on the magnetic properties being
described by the magneto-elastic energy. The strain tensor, in the approximation of linear
elasticity theory, is modified by a function of the Yukawa potential shape ensuring finiteness
of the strains on the dislocation line. The resolvent of the equation of motion is used to cal-
culate the density of magnon states with zero wave vector component k, along the dislocation
line, as well as that of the frequencies from the magnon band bottom. The numerical analysis
has shown the existence of the greater density of states at the band bottom for the modes
kz = 0. The density of states peak at the band bottom is separated from the other states by
a large gap for whiskers having a small radius and for magnetic materials with a large magneto-
elastic coupling constant.

1. Model of the physical situation

Contrary to Refs [1, 2], the dislocation is now considered as destroying the symmetry
of the crystal in the entire volume of the latter, the influence of the dislocation is described
in terms of strain, in the linear approximation of elasticity theory. In the region of the
dislocation core the expressions for the strain tensor [3] are modified by a function of
the Yukawa potential shape to remove its divergence in the linear approximation used.
The modification consists in the replacement of 1/0 by [1—exp(—p/ro)]/o. The non-zero
elements of the strain tensor are assumed in the form

ew(r) = —(b/4m) [1—exp (~ofro)] (1]0) sin g,

ey:(r) = (b/4r) [1—exp (—/ro)] (1/0) cos ¢. )
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with: r, — the radius of the dislocation core, b the length of the Burgers vector, and
o, ¢ polar coordinates (r, = gcos g, r,= o sin ). The influence of the dislocation
is dealt with as that of a uniform field, described by the magneto-elastic energy
e%me = Z z {(UB/SZ)SL(DSJ(I)
1

i,j=x,y.2

=J Az [S{DS;(I+ ) =S, (DS (D]}eiry, 2

where B is the magneto-elastic coupling constant, S;(I) and S the j-component and length
of spin in the Lth lattice node, ¢ the volume per magnetic site, whereas the constant J'
is defined by the pressure-variation of the exchange integral (see, Appendix). Summation
over A extends over the nearest neighbours of a givén site, whereas [ indicates summation
over all spins. :

The total Hamiltonian of the system is

W=%O+%me' (3)

H#, comprises exchange, Zeeman and dipolar interaction [4]. The external magnetic field
is assumed sufficiently strong for (i) effects of spin wave ellipticity to be negligible and -
(if) magnetisation to be almost homogeneous and effects due to static inhomogeneity negli-
gible. We shall refrain here from considering the case of a ferromagnetic undergoing a phase
transition in the core region under the effect of stress. The Holstein-Primakofl transfor-
mation [4] brings the Hamiltonian (3) to the form

Hh =YY sz(kg, Koy kx5 o @

ke ko ko'

where akig,kz are boson creation and annihilation operators. The vectors k, lie in the plane
perpendicular to the dislocation line and k, is the k vector component along a dislocation
line. The kernel K(k,, k,, k) is of the following form

K(k,, k), k.) = iy i, +(@n[r})idL(ky, Ky, ko). )

The frequency w; of modes of the dislocation-free ferromagnet is taken into account
in the Herring-Kittel approximation [4]

o = y{H+a(k2 +k2)+2nM, sin® 9}, 6)

with: H the internal magnetic field, M, the complete magnetisation, ‘o the spin-wave
dispersion coefficient, y the magneto-mechanical ratio, and 9, the angle between the wave
vector k and the magnetisation direction. A single screw dislocation is assumed within
the entire volume of the crystal, as in the case of whiskers. The z-direction is that of the
dislocation line, and r, the whisker radius. The coefficient A is of the form

A = (3yB/8n*M )b sin 29,, @)
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where 3, is the angle between the magnetisation direction and the dislocation line (whisker
axis). The function L(k,, k,, k,) is given by the components ky, k, of k, as follows:

PRI = S S
@00 T (ke— k)P + (k= k) N1+ r2[ (ke — k)P + (k, — k)7
MyJ'|J

2k?
2 2K

| — ‘
—Jo(y ¥ (k= ki) + (ke — k;)z)} il =
3k KR+ K — Ak K+ kyk;)]} . 8

2. The equation of motion for the resolvent

The equation of motion for the mode a;_,,
App. = — ilar,«.. H|[h] 9

leads to the following “‘integral” equation

1 :
g, (ke @) = - z K(ky, kg, k)otx, (K, ). (10

k

e

The mode oy (k,, w) is the Fourier transform of a4, . We shall henceforth concentrate
on the resolvent of the homogeneous equation which, in the case of a perturbing function
f(k,) equal to zero, goes over into (10)

oy (kg @—in) = Z K(k,, k,, k. )oy (k., ©—in)+f(k,). (11

kK,

w—in

In the inhomogeneous equation, the frequency o has been replaced by @ —iy. The solution
of (11) can, in general, be written in the following form

cck—g(kz: - ”7) = f(kg)+ CO—;”’I Z I-(kga ké): w— ”79 kz)f("é)’ (12)

k,’

which defines the resolvent I'(...) of Eq. (11). By insertion of (12) into (11) one easily verifies
that the resolvent fulfils the following relation

' 1
Tk Ky 0 —in, k) = —— g K(k,, K, k)T(E,, Ky co—in, k)
w—in '

+K(k,, k., k). (13

2° Voo



196 -

By having recourse to the form (5) of the kernel, we transform (13) to

4 Lk, k', k,
Ik, k., o—in, k,)—iA<_f>§ Lk, Ky, k.)
ry w—@p—in

i~

3

w—inKk,, k,, k,
KT, Ky 0= in ) = O e Fe D, 9

The kernel of Eq. (14) has the highest symmetry for k, = 0. On reflection at the plane
k, = 0 it remains unchanged, but undergoes a change in sign on reflection at the plane
k, = 0. For k, # 0, the symmetry related with reflection at the plane k, = 0 is maintained.

3. Density of magnon states with vector k, = 0

For simplicity, we shall be considering only the density of states of magnons with
-zero wave vector component along the dislocation line. The density of states is given
by the imaginary part of the resolvent. That with fixed &, is given as follows

1
N(w, k;) = Wlm g I'(ky, kyy 0—in, k), n—07. (15)

ko

On taking the trace of (14), we obtain the following equation for the density of states
with £k, =0

Lik,, k., ,
N(w, 0) = —os w( ew e X I(kQ, k,, & —in, 0)+ No(w, 0),
§ § j=

n—07, (16)

where Ny(w, 0) is the density of states k, = 0 for a ferromagnetic free of dislocations

1
No(o, 0) = (1/7) Im E —, n-0" an
W—w—in

kQ

For simplicity, we calculate the right-hand side of (17) for # so large that summation can
be replaced by integration. For frequencies from the band bottom, the density of states
k, = 0 for the dislocation-free ferromagnetic is expressed as follows

k3 Wmax

2

2
r ry
No(w, 0) = SE;W

) 1
Im J d®d; f doy, — & Dy, (18)
w—wp—in  2nyo

A
-z @1(Pi)
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where ’
(O for C” wl(O)

w—wI(O)

onD—oy@) " O SO =l @

D, = J arcsin

L7r/’2 for w > w(n/2).
The function w,(®,) represents the value of w, for k = 0
(@) = y{H+2nM(1—sin® 3, cos® &,)}. (20)

To calculate N(w, 0) from (16), we approximate the function L(k,, k,, 0) in Eqgs. (14)
and (16), applying Lagrange’s method [5]. In our calculations, we shall make use of
coordinates w, and &,, defined as follows

ky = ky,cos &, . k, = k,sin &, (21a)
where k, is a function of w; and &, defined by (6) for k, = 0
o = y{H+ ok} +2nMy(1—sin® 9, cos® &,)}. (21b)

‘With regard to the factor 1/(w— d)k— i), when expanding in w, we have restricted ourselves
to a Lagrange expansion based on a single interpolation point & and equal to wif @ > w (29
but equal to w(®9) if o < w,(PF). The basis of functions [}(®,) wherein we expand
L(k,, k,, 0) in the coordinate @, is chosen in a manner that the above-mentioned symmetry
of the kernel of Eq. (14) shall be conserved. We assume I(®,) in the following form

(1~x3) Fu <7z— _(Dk - o-)

I(®,) = 2nP,_(x;) o, — D]

for <1

——@k—-O'
g

22)

2
0 for | —®,—0| > 1
: 4

where ¢ = +1,j =1, ...,n. We expand the function L(k,, k,, 0) in the interval (—m=, 0)
in the basis [; (¥,) and, separately, in the interval (0, 7) in the basis /] (®,). The interpolation
point§ & of the Lagrange approximation are chosen as follows

=@/2)(o+x); j=1,..,n, o= +1, (23)

where x; is the j-th root of the Legendre polynomial P,(x). We have chosen the inter-

polatlon points @7 and determined the basis of the functions I5(®,) as in the Nystrom’s
integral equation method Henceforth, we shall be assummg the n as even.

Applying the Lagrange interpolations for L(k,, k,, 0) with respect to the coordinates

®, and o, of the vector k,, we arrive at the following expression for the density of states

N(w, 0) = Ny(o, 0)+(4/na?) Y, Z Re g77 (24)

ji=1 o=
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The functionals g'¢ are to be calculated from he following set of 2n equations

n

a6 z Z 6,0 ¢",¢" =" Fa,0

gy —id G gy =5y
=1 ¢"'=%*1

JJ =1,.,n; o,6 =%l (25)

We have obtained the set (25) from equation of motion (14). Above, we have introduced
the following notation

Lk (&, 85), k,, 0)I5(®y
G =(47r/rf)z-("( ik ko WylBe), (26)
ko

w—wp—in

i = tbomin | 3 LA OO 120
Jsd
ko' ko'’

(0 -y —in) (0—p —in)

) (i) Z oy Lk (@, 9, ki O5(®) -

(0~ — i'?)z

The functions G%%, G35 possess the following symmetr
Jsd JoJb b >
ga¢ _ _ To—d —~a,~a’ __ a6’
Gj,.i’ - GJ',J" - n—j+in—j+1 — Gn-j+1,n-j'+1> (28)
ra,0’ —a,~a¢" __ __ ~—g,—a' _ po,e
F3j = —F; 777 = =F, 5 a-p+1 = Faljein-yar 29

Egs (28) and (29) are the result of our assumption of a basis conserving the symmetry
of the kernel of Eq. (14). The identities (28), applied when solving Egs (25), lead to a partial
factorisation of the set of 2n equations. In place of the set of 2n equations (25), we obtain
four separate sets of n/2 equations each.

On insertion of the Cramer solution of Eqs (25) into (24) we have the following ex-
pression for the density of states k, = 0 ‘

nf2 4 ;

N(w, 0) = Ny(w, 0)—(l/n) Im '21 hgl Rj_,,l'(‘l‘z)Tl, (). (30)

=

The matrix Rj,'(h) is the inverse of the matrix R; (h), defined as follows

nf2

Rj(h) = 6+ lZ {BjAs,i01,nt AzuBuyO2,n
=1

+Dj,lcl,j’63,h+Cj,lDl,j'54,h}9 j, ]’ = 1, coesy n/2, h = 1, e 4, (31)

where
Ay = A{ ;r,i++G;:i_+G;:r?tl+1+G;:r’.~_-z+1}a

Bj, = A{GZi+ _G}tl’_ +‘G1-'tr;tl+1 _G;:;.ZH 1)
C;i= A{G;:,’+ +G;r,z’— _G]_'tr’ltl+1—G;;r;:l+ i}
Dj, = A{G}i* = Gli™ =Gl + Gl ), (32)
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whereas- the matrix T ;(h) is of the form

nf2

T; i(h) = Y {Bj,lEz,j'51,h+Aj,th,j"Sz,h+Dj,1Nt,j'53,h+ CiuM ;045 (33)
1=1

with
El,jv = Aw_Z{FZ_.I’++F:;_+FZ‘,;.-_FJ+1+FI‘:::J+1}5

—2¢pt,t - +,+ o
Kyj= Ao  {F ;" —Fpj +F i —Fri- g

p —2ipt, +,- o+ +, -
N, = Ao {F ;" +F;; “Fl,n—j+1—Fz,n’—j+1}’

+

My = Ao {F5 T —F = FL T+ Fl ) 34

4. Numerical analysis

The functions G‘J’;’ and F;.’;J‘.’,' depend in a highly complicated manner on o for - 07,
and summation over , cannot be replaced by integration. Leaving unconsidered the
discrete structure of the density of states and similarly as when calculating No(w, 0) we
calculate the density of states for 5 larger than the distance between consecutive w,’s.
For 5 larger than the difference between consecutive value of wy, we obtain the mean value
of the density of states in the neighbourhood of the point w. The calculations simplify
considerably, and summation over the w; can be.replaced by integration. Finally, we
obtain the functionals G;’J” and F ;’J" in the form of the following expressions

¢,6’ -l o’ ‘
(=0 )Lk(B, ¥}), k(1 ), 0)
(0—wp) +¢*

. Omax
X @y,
@1 (D)

+iL(k (@, 99), k (@, B,),0) B —arctg “i‘b;—)_ “’J} (35)

4

iy o ) LG 0, 1iB.00.0

= 2y - 2myM, sin? 9, sin 20,
s=1 '
. o(n/2)~w o,(0)—w
P X 15(Py) [arc tg 1(7/2) —~arctg —1( )— ]
n

w

0 N _
+ J kol;’(ék) [5&;— L(kq(w’ ¢;)3 kg(wka djk)’ 0)]
. k i

-T

(Dk=(D

X [1 —arctg wl(djk)_w:l} , (36)
2 n
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where

&, = arccos V[0, (1/2)~ w}/[w;(x/2)— @1(0)],
O, =n—P, P3=—-0, &, =—, (37

For a frequency w not belonging to the interval (w,(0)+#/2, w:(n/2) —#/2), we calculate @4
replacing w in Eq. (37) by the respective value of the edge of the interval.

We carried out numerical calculations of the density of states k, = O for various
angles between the dislocation line and the quantisation direction for the following
material constants [3, 4, 6], corresponding to nickel: & = 3.47 X 10~° Oe cm?, B = 6.2x 107
erg/em®, y = 1.9%x 107 1/Oe s, J'[J = —3, M, = 510 Gs. We assumed an internal field

A N@w0)xy
[1/0e}
16 b=
.' =30,
12 - rz =10 "cm
I
.8 =
4=
16600 17400 18200 19000
Wy [Oe]
Fig. 1
RAN(wQ)xy
[1/0¢]
8 =
6
4 -~
2 —
16000 16800 17600 18400 19200

Fig. 2
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of H = 15000 Oe, moreover #/y = 300e, r; = 10~*cm, ry = 1.2x 107 cm, b = 2.49 x
x10-8 c¢m, and n = 2.

In the figures the continuous and the dashed lines represent the density of states with
k, = 0 for a dislocated and non-dislocated ferromagnets, respectively. Where the density
of states of the dislocated ferromagnet is equal to zero in the figures, we have obtained
negative values of the density of states. In this region for either greater dislocation radii
or smaller magneto-elastic coupling only an anti-resonant state appears, therefore the
negative density of states should be treated as vanishing. The numerical analysis. has
shown the increase of the density of states at the band bottom. This density of states peak
is separated from the other states with £, = O by a gap.

The author wishes to thank Professor J. Morkowski for suggesting the problem and
for reading the manuscript.

APPENDIX

Determination of the ratio J'|J

In the Hamiltonian, we take into account the exchange interaction of the rigid lattice
and a term with the magneto-elastic energy due to a change of the exchange integral
caused by the strain

H = —JY Y S S(I+4)
I 4

—J'; Y Y SDS(I+der). (38)

4 ij=x,yz

Assuming that the strain is caused by a pressure p which acts on a crystal, we can write
Eq. (38) as follows

H = —J{1+TA-20p/[20p(1+W)} Y T S() - S+ 4). (39)
]

The expression J{1—J'(1—-2v)p/[2Ju(1 +v)]} represents the effective exchange integral
for a ferromagnet subjected to the pressure. Here, v is Poisson’s constant and 4 the shear
modulus. Assuming the Curie temperature 7,(p) in degrees Kelvin as proportional to
the effective exchange integral, we derive from the ratio of Curie temperatures of the ferro-
magnet under pressure and free of external pressure the following expression for J'/J

I 2L+ TUp) - T0)

7S -p 1) 0)

In the case of nickel, we obtain J'/J = —3.
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