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We present a detailed study of the exact time evolution in a two-component ideal
gas in which at time # = 0 a short-ranged external potential of arbitrary strength is switched
on that can transform « into b particles. The redistribution of matter is followed via the
space- and time-dependent a particle .mass density g,(r, ) of which we present a series
of perspective views over the (r, ¢)-plane.

1. Introduction

In a series of papers [1-4] we have proposed and studied a number of microscopic
statistical models in which the non-equilibrium time evolution of macroscopically large
multi-component systems can be calculated exactly. In Ref. [1] we considered a two-
-component ideal gas of @ and b particles in which at some initial time, ¢ = 0 say, a constant
external potential is switched on which will transform a into b particles. The Hamiltonian
of such a system is given in second quantization by

H= Z(s‘% ap+6bf bp) +6(HQ ™" 2 Viilai by +blap) = Hy+0()V €}
k k’

where a; (a+) and b+ (b;) are creation (annihilation) operators for @ and b particles (Fermions
or Bosons) in momentum states i, respectively. Putting 2 = 1, the single particle energies
are given by &” = k%2m, and &) = k?|2my+e, where &, is the threshold energy for
the formation of a b particle. (For illustration, consider a spin 1/2 system: a and b, then
refer to the two spin orientations, V3;- induces spin-flip scattering, and ¢, is the (relative)
Zeeman energy in an additional external magnetic field.)

Let us assume that for times # < O we have prepared an ideal gas of @ and & particles
in thermal equilibrium distributed uniformly throughout the volume €. Its statistical
‘operator (for a canonical ensemble) is then given by _

Qo = 0(t = 0) = 4,0, = exp (—BH,). (2)
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At time ¢ = 0 we switch on an external potential that is constant in configuration space
and thus diagonal in momentum space, i.e. V;; = Voél;,»c,, which, according to the Hamil-
tonian equation (1), will transform a into b particles. We call this the diagonal model.
We can follow its effect on the system by calculating the resulting time evolution of the
average a particle density, given by

o) = Q7' Y m() =7 LT (af az0)/Tt g, 3)
k k

where
0, = ethéoe—th_ (4)
Shifting the time evolution operators from g, onto a;j and a, we have to evaluate

o) = @71 Y. Tr (a7 (Dai(D)20)/ Tr Qo5 (%)

where the a{ (2) and a;(t) are subject to the equation-of-motion
id; = [az, H] (6)

which in Ref. [1] was solved by diagonalizing the Hamiltonian, Eq. (1), explicitly. The
result is given by '

g“(t) Qa(0)+ (””]—) szdeZI(Vo + (8(a) (b)'))
(4]

x [1—cos (26(Vg +% (6" — &))" (n(0) ~ n{(0)). ™

It should be stressed that in our approach the dynamics of the system, i.e. its time evolution,
is calculated completely at the operator, i.e. single-particle level, whereas the statistics
only enters in the ﬁnal averagmg over the initial conditions, i.e. via the equilibrium distri-
bution functions 7§ )(t = 0) and #{(+ = 0) which can refer to any particle statistics. The
density o,(1), Eq. (7), will, in general, exhibit damped oscillations as illustrated in Refs [1]
and [2]. The source of this irreversible behavior can be found in the thermodynamic
limit involved by replacing sums Q*lz by integrals (27)~3[d3k in going e.g. from Eq. (5)

to Eq. (7). This leads physically to a randomlzatlon of the phases of the various momentum
components 7,(f) as ¢ — oo as already recognized by Schrodmger [5] in a much snnpler
model, namely a classical harmonic chain of mass points with nearest neighbor coupling.

The diagonal model was subsequently [2] studied in great numerical detail for three-
and four-component systems and also for various initial conditions, i.e. for Maxwell-
Boltzmann gases, weakly degenerate Fermi-Dirac and Bose-Einstein gases and for Fermi-
Dirac gases at zero temperature. A discussion of the equilibrium properties of the diagonal
model can be found in Ref. [6].

Although the dlagonal model exhibits irreversible behavior (damped oscﬂlatlons)
in the thermodynamic (large volume) limit, it shows no approach to equilibrium as # — co
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due to the lack of momentum mixing in the constant external potential. Thus the final
steady state reached by the system will in- general depend on the initial conditions. To
remove this, in most circumstances {7] unwanted feature, a momentum mixing mechanism
has to be present in V;;.. This we have done in a subsequent paper [3] in which it was
shown that the diagonal model is, in some sense, the lowest order approximation of the
more general problem of a two-component system which can undergo ““catalytic” reactions
in a random collection of static scattering centers (“impurities””). The Hamiltonian of
such a system is given by

H= z(g<a>a+a++.c;g’)bg b)) +0(HQ™! 2 Viz (a3 by +b;l ap) 8)

?:4

with
Vie = Vi ). e ikTK) R (9)
7

where f?,- are the random positions of the scattering centers and VE/? is, in most cases,
a short-ranged potential mediating the transformation of an « into a b particle during
a scattering event. Choosing for V3;. a separable potential, we were able to calculate the
exact time evolution of the a parncle density o,(t), Eq. (3), in a system subject to the
Hamiltonian Eqs (8) and (9), without, however, giving any numerical results. In this
paper we want to consider the much simpler problem of the time evolution of a two-
component system in which “catalytic” transformation of a@ into b particles can occur
in a momentum mixing scattering process at one isolated, static impurity, described by
a separable potential. The dynamics of the system is thus controlled by a Hamiltonian
like Eq. (1), but one in which the external interaction

Vie = guiti (10)
is chosen to be a single-term separable potential acting in s-waves only, i.e. to be spherically
symmetric in configuration space. In our numerical examples we will choose the potential
form factor v, = (k*+72)~! to be of Yamaguchi type [8] though our methods of solution
are independent of this choice. In coordinate space this form factor shows exponential
damping of range A = y-i.

Because the effect of a potential of finite range on the time response of an averaged
‘quantity like o,(¢), Eq. (5), averaged over an infinite system, is zero, we have to study
in this problem the time evolution of local macroscopic quantities like the space- and
time-dependent local density

040> 1) = Tt (W] (7, )7, D06)/Tr 0o (11)
where

w1 = 0 Y e Fayn) (12)
%

are field operators expressed in terms of particle annihilation operators a»(t)

In the next Section we will present the exact calculation of o,(r, £) and continue in
-Section 3, with a detailed numerical study in several examples. The results will be discussed
‘with the help of three-dimensional plots in which perspective views of “the density surface
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0,(r, t) are presented over the space-time plane. This will be done not only for weak poten-
tials but also for strong interactions, strong enough, indeed, to cause ideal gas particles
to be trapped in resonances and boundstates around the potential center.

Similar pictures have been presented elsewhere [4] for the time evolution of a one-
-component ideal gas in which at time ¢ = 0 an external separable potential is'switched on.
The main results from the numerical work in the one-component system can be summarized
as follows: for the initial time period after the potential has been switched on, we observe
a very complex behavior in the local dénsity within the range of the potential. After some
time has elapsed highly dispersive density waves emerge that travel outward, i.e. away
from the “impurity”, and eventually build up, for strong potentials, into collisionless
shockwaves. In this last stage of the time evolution, a simple hydrodynamic description
seems appropriate. “

We would like to mention here that in the one-component system [4] as well as in
the two-component system to be studied in this paper, one can easily show that the system
will settle for large times (# — o) in the new steady state appropriate for an ideal gas
in such an external potential. To understand this, we have to note that in these systems
irreversibility is again due to the thermodynamic (or large volume) limit: let us, for the
moment, imagine that the whole system is divided into two subsystems: a finite part ex-
tending over the region of space where the external potential affects the motion of the
gas particles and the (infinite) rest of the system. The latter part will then obviously act
as an infinite particle and energy reservoir for the former, and will force it isothermally
into equilibrium as time progresses. Let us also note that in a truly finite system (taken

"to be spherical of radius R for simplicity) the Poincaré recurrence time is of the order
tp ~ 2R/vg which is the time needed fof a typical wave emitted in the switch-on process
to travel with a speed v, to the boundary and be reflected back to the origin, very reminiscent
of spin-echo experiments [7].

“The interest in-the time evolution of a two-component system in an external potential
center stems mainly from its larger complexity as compared to one-component systems
due to at least three features: the potential center will act as a particle sink for one kind
of particles due to the fact that it transforms @ into  particles in a scattering event. Secondly,
in a two-component system a single separable potential can produce both a resonance
and a boundstate. (This feature can be most easily demonstrated in the generalized optical
potential approach, see e.g. Refs [8] and [9].) As a third bonus, we have in a two-component
system an additional parameter at our display, namely the mass ratio m,/m, of the two
kinds of particles involved. All these features will be demonstrated and discussed at length
in Section 3. In the next Section, we will briefly outline the calculational methods employed
to find the exact time evolution of g,(r, 7).

2. Some calculational details

It is our objective in this paper to study the time evolution in a two-component
system of @ and b particles which is initially, for times ¢ < 0, prepared in such a way that
an ideal gas of only a particles is uniformly distributed throughout a volume € at a constant
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Fig. 1. Perspective view of the surface (+/A)%(a(r, 7)/0a(0)—1) over the (r,7)-plane. Yaw = —30°,

Pitch = 45° at a distance of the observe = 10x diagonal of the cube. For meaning of parameters see text

below Eq. (31)
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Fig. 2. See Fig. 1, but note the rescaling of the plane. yg is the dimensionless Fermi-momentum, Eg. (44)
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Fig. 3. See Fig. 1



Fig. 4. See Fig. 2
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temperature. At time 7 = 0 an external interaction is switched on in the system, described
by a static potential (an infinitely heavy localized impurity) Ve = gogp. which can
transform a into & particles in a (momentum mixing) scattering event. The system will
respond not only with a creation of b particles but also with a time and space dependent
redistribution of a particles which we want to follow through the local @ particle density
2d(F> 1), Eq. (11).

In this section we will outline briefly the main calculational steps involved in the
computation of ,(F, £). With the help of Eq. (12) we can rewrite Eq. (11) as

eF. ) = 27" ¥ e T Tr (0 (1ap(0)30)/Tr 4o (13)
E
where the particle operators are subject to the equations-of-motion (choosing & = 1)
id; = [ap, H] = 83"’ak+0(t)9 ' Z Vizbi (142)
[bk, H] = & br+0(nQ™" Z Viray (14b)

and H is given by Eqs (1) and (10) We can solve Eq. (14b) formally with the help of the
free retarded Green’s function to get

t .
bip(t) = e~ Ptpr(0)—i 2 Vi £ dt e™ i D=y (1, (15)

Inserting this solution into Eq. (14a), we can again solve formally and get after exchanging
the two time integrations

t
ai(t) = €7 ay0)—i [ di' eTOCTIQTL Y P oI Wy (0)
_ 5 4

- Vas Vo, ] = k= c R : .
+iQ™2 (:’)‘ k?b) J dt' ag.(t') [e7i V) _ pmia™=ey] (16)
é e v

*, s 0
»

To solve this integral equation we next take Laplace transforms with respect to the variable
t and find

A 2) = g‘ dte™ ay(t) = A¥(z)
i Q_l ”: Bin -Q—'l o > 1 N
T e Vii | By(z)—i Vi Z—_‘_Tg,) A (z) 17
[ B
where -
. i
4@ = o O
| in 1 . ;
,‘:(z) T (b) k( ) (18)

z+ig, .
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If Vi = guibe is assumed separable, we can solve Eq. (17) easily. By multiplying it
with v, and summing over k, we can determine the auxiliary operator

A(z) = Q71 Z 0, A3(2)

= (A"(2)— il (2)B(2))[(1 + 1(D(2)) 19
where
A°(z) = Q7' Y 0 AF(2)
k .
BU(z) = Q7' Y. u,B(2) (20)
-
and
I(z) = g~} v
o{2) = g Z —ZTI_S(,:—)
F3
_.1 vl%

k

With the help of Eq. (19) we find the solution to Eq. (17)

k

- Uy . Uy
o(z) = A(2)—i —— — B"(z)— ——= [,(2)A(2). 22
#2) 2(z) i@ (2) i@ H2)A(z) (22)

To carry the calculation further, we assume that the single-particle energies are &” = k*/2m,
and & = k?/2m, (no threshold energy) and specify the potential form factors to be of
Yamaguchi {8] type [10]

v = (KE+y)7 (23)

Replacing in Eq. (22) the summation over momenta by an integration in the large volume
limit, we get

-2
o =& (Jz T ) 24

and a similar expression for J,(z) which we insert into Egs. (19) and (22). After factorization
of the denominator of Eq. (19) and partial fraction decomposition, we get

4
1 C.
in, Uk Up B S—
A(2) = A"(z)— E‘______.> e p,0) 25)
D) = A@D=8 ) o T ) 7o, P

> Py
? j=1
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4
2
C; = e—in/4§i_y<aj+ \/21m_> /l I (;~a) (26)
: =1 -

I#j

where

with the four roots of

1+1(2)(z) =0 27N
given by
2 2 1/2
y ( 1 1 Y 1 1 g]
o Hamr )t te) - @

We have dropped the in-field of the b particles in Eq. (25), becaiise it will not contribute
due to our initial conditions, that no b particles are present at ¢ = 0. We are now in a posi-
tion of taking inverse Laplace transforms on Eq. (25) by noting that [11]

ctiw

1 i a 1 1
P dze = inja
2mi Z+ie jz —e™

c—iowo

; 1 - . ) — . N
= g in/4 e {(i e —a)e” ¥ + ae™ Brfe (—a Vi) —i\Je e7® Brfc (\/~iet)} (29)
ET
where
x
‘ 2 [ n
Erfc (x) =1- y: e dt (30)
T

is an error function. The resulting exact time evolution .of the a particle annihilation
operators is then given by -

0

c+ioo
1
a) = — | dze4y(z)
oy a)

c—iw

= e"™ay(0)+Q7" ¥ Fr(naz(0), (1)
p

where F;c;,(t) is a rather complicated function which we will give presently after we have
introduced a set of dimensionless variables, namely V, = g, 13 = h2/(d4m, Vo), v = Ao/

= mylmy, a; = 0N 2Vs, x = kio, ¥ = plo and © = 2V,t/h. We then find
Fiy(t) = A3v/(32m)F(x, y, 7)

4 -4

: : ! ; (a;+v) ( )
= a;rv a.—a
XAV Pyt yioxt g T i

j=1 I=1
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1 . . . _ ; . .
{ e az [(ix—a;)e” ™ +a;e ™ Erfc (—a;e™* \[t1)—ixe™ ™ Erfc (e”™/*x \/7)]

[Giy—ape™ " +a,e™™ Erfc (—a;e™* /1)

y2+af

—iye”™ ¥ Brfc (e~ ™4y \/%)]} , (32)

We are now in a position to calculate g,(r, 7). Inserting Eq. (12) into (11) and using Eq. (31)
for a;(r) we get

0ulFs ) = ot = 0)+272 ¥ (¢F ) 0y Fp (1) +c.c.)
k& :

+0Q73 )% n$(0) >) T TEE (O F (1) (33)
rp . kK

where the initial conditions imposed in the system enter in the final traces in the initial
ideal gas of a particles .

Tr (a3 (0)az(0)0)/ Tt @o = Szni"(0) (34)
where
ni(;a)(o) - (eli(Ek(“>—u) + 1)— 1 (35)

for Bose-Einstein (negative sign) or Fermi-Dirac statistics (positive sign) or
(a)(o) e Bl —m) (36)
in the classical limit of Maxwell-Boltzmann statistics. Here p is the chemical potential (per

particle) in an ideal gas. To procede with the evaluation of 04(r, ) we next take the large
volume limit by replacing sums Q- 12 by integrals (2n)~3{d%k in Eq. (33) and observe that

for a spherical potential o,(r, f) w111 only depend on the radial distance r = 7| from
the potential center which makes the angular integrations trivial. If the gas of a particles
was initially described by Maxwell-Boltzmann statistics, Eq. (36), we find in the dimension-
less variables introduced above -

1 Ao 2 /5\%2
0.1, Dot = 0) = 1+ 62" (7) (;) 7

ES @ . .
x | ydy sin (yr/Ag)e [ _f xdx sin (xr/Ag)F(x, 3}, 7)-+complex conjugate]
0

2 ﬂ. 3/2 5
(41;)5< 0) <3{> J vidye™

X | j xdx sin (xr/Ag)F(x, y, T)*. 37
4]
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Here 6 = 2Vof = 2V, /ksT is a measure for the temperature in the gas. Expressions
quite similar to Eq. (37) can be written down for gases with quantum statistics. As a final
technical remark let us note that the x-integration in Eq. (37) can actually be carried out
explicitly yielding a very lengthy but also very interesting expression which we have given
in Ref.. [4] for a one-component system. The final, but rather simple y-integration in Eq. (37)
has to be done numerically.

3. Examples

Our final result, Eq. (37), in the last section entails the following physics: we have
prepared a times # < 0 an ideal gas of a particles uniformly distributed throughout space
at a constant temperature. At time ¢ = 0 we switch on a separable external potential that
can in a scattering event within its range transform a into b particles. The local density
of a particles o,(r, #), Eq. (37), describes exactly the space- and time-dependent response
of the system to such an external action for any strength of the potential.

The analytic discussion of g,(r, r) for a slightly different potential form-factor was
given in Ref. [3] and will not be repeated here. Rather we proceed to some numerical
examples for o, (r, ) concentrating on the new features emerging in a two-component
system over and above those fascinating structures that already appear in a one-component
system.

To illustrate the complex dynamics of the two-component system studied here, let
us write down the single particle Schrédinger equations for the stationary states (in momen-
tum representation) ’

2

2m,

Y (k) — E¥ (k) = -gvkz v,%,(P) (38a)
2

k - - =
5 VoK) —(E—2)¥y(k) = —gu, Z v ¥u(P) (38b)

2my,
2
where the ¥’s are single-particle wave-functions. (In nuclear physics and potential scattering,
such a system is referred to as a two-channel system [8, 9, 12].) Solving (38b) we get

- 1 . -
k)= = 37— e Z vp¥o(P) (39

— —E+4g—is 3
2m,, b P

which inserted into Eq. (39a) yields

2

o PelR)—E¥,(R) = — Z <KVl P> .(F) (402)

where
kY oilB> = G(EYvyo, (40b)
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is usually referred to as the gen_eralized optical potential [12] for the first channel with
the effective energy-dependent coupling constant

2
G(E) = —g?z 2 . (40¢)

5 E '—E+8b—-i8
Observe that G(E) < 0 for E < ¢, (s, = 0 in our case) and thus can allow a boundstate
for sufficiently large g. Also note that Re G(£) > 0 somewhere above threshold and this
can lead to a simultaneous resonance. The imaginary part of G(E) describes the loss of a
particles once the b channel is open for E > &.
For a Yamaguchi- [8] potential form factor v, = (p*>+7*)~' we have

g2 . v -2
GE) = =~ (E +i = 41
() 3ny <\/ -H\/zmb) (4la)
which is for E < 0
2 -2
g e b

G(—|E) = — —{VIE L 41b
(- IED = - g (J E| + \/2,,,) (41b)

and for E > 0

2 Bl . A \2
Gy - £ WE +iy2m)*

T8 (E+1YCmp) (41e)

In a Yamaguchi potential a boundstate can occur (of course only in s-waves) at
o — G(E,, 1/242
P (i S "~)> ) (42)
\/ 2m, 8ny

( "G(EP_Q)”Z— 2> (43)
8my N 2n,

We had seen in our discussion of the one-component system [4] that the occurrence of
a boundstate is reflected in o(r, £) as time dependent density oscillations of period h/|Eysl
within the range of the potential. This feature should again show up in the two-compo-
nent system but this time with a typical dependence on the mass ratio u = m,/m,. This is
illustrated in Fig. 1. We plot here, and in subsequent pictures, the quantity (rf A2 (ou(rs 1)/
Jo,(t = 0)—1), i.e. the a particle mass in a spherical shell at distance r from the potentjal
center, as a function of this radial distance and also as a function of the (dimensionless)
time variable 7 = 2V,1/li. The potential parameters in Fig. 1 are such that a boundstate
barely develops. To suppress temperature smearing we have also taken 8 = oo in Eq. (37).
(Some cautionary remarks about this limit can be found in Ref. [4].) Observe first the
pronounced density ridges and valleys running more or less diagonally across the (7, 7)-plane

if
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very reminiscent of the density evolution in a one-component system with a weak external
potential [4]. These structures are obviously -radially outgoing density waves emanating
from the potential center when the interaction was suddenly switched on. In addition we
can see in Fig. 1, within the range of the potential, i.e. for /A < 1, time dependent density
oscillations that obviously get shorter as the mass ratio u = m,/m, is changed from 1
to 0.5 to 0.1. These oscillations reflect the attempt of the system to fill a barely existing
boundstate. Because temperature smearing effects are suppressed in the 6 = oo limit,
these oscillations will repeat themselves for ever. For 6 < co these oscillations would be
damped. But they are also damped in a Fermi-Dirac gas at zero temperature, as illustrated
in Fig. 2. In this case the integration over the Boltzmann factor in Eq. (37) has to be replaced
by an integration over the Fermi sphere according to
s} ¥r
3/2 { —5y2 13 .
(8/m) Je edy = — = | .. dy (44)
4r yg
0 0

where yp = Aokp = (612430,(0))” is the dimensionless Fermi momentum. Let us not
overlook that Fig. 2 shows the complete a particle density evolution over the entire
(r, 7)-plane which we have rescaled into a finite section by the transformation r — r/(r+rp)
and 1 — t/(t+71,) with appropriately chosen constants r, and 7,. We thus can also see
that the outgoing density waves remain of a finite (eventually decreasing) amplitude.
The boundstate oscillations within the range 4 of the potential are clearly damped. The
depression in g (r, 7) for distances r twice or three times A stem partly from the shape
of the boundstate wavefunction in our potential which is of the Hulthén form [13], namely

LWL () ~ (e =g Ay .(45)

where A, = 1/(2m,|E, ). The depression in g, (r, t), however, also signals the fact
that the a particle subsystem can loose mass in the creation of b particles. Note that as
T — 0, i.e. 7/(t+10) = 1, the system settles in its new steady state appropriate for an
ideal two-component gas in the external potential. g

In Fig. 3 we can investigate the effects in a stronger potential as compared to Fig. 2.
We again observe damped boundstate oscillations, but in this potential they are predated
by a huge mass enhancement peak which is a consequence of the fact that this potential,
in a single particle picture, not only has a bounstate for negative energies but also develops
a resonance for positive energies which would e.g. manifest itself as a peak in the single
particle scattering cross section. Because a resonance can be pictured as a boundstate
with a finite lifetime, this great mass enhancement disappears again as time goes on. It
is very interesting to see in the lower picture of Fig. 3 that at some later time the resonating
mass enhancement peak can reconstruct itself once more further out in space. (When
picturing the true behavior, always bare in mind the spherical symmetry of the system!)

In Fig. 4 we have a look at the initial stage of the time evolution of the same two-
component system as Fig. 3 but with the effects of temperature smearing (or momentum
mixing due to the integration over the Fermi sphere) removed in the limit § = 0. We
see very beautifully the towering mass enhancement peak shortly after the potential was
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switched on, followed by boundstate oscillations within the range of the potential as time
goes on. All this action leads to outgoing spherical density waves represented in such
a plot as ridges and valleys running more or less diagonally across the (r, t)-plane. This
figure can be analyzed in detail in comparison with the structures in the density evolution
of a one-component system for a pure boundstate case (e.g. Fig. 5 of Ref. [4]) and a reso-
nance case (e.g. Fig. 8 of Ref. [4]).
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