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LIMIT- AT NONZERO TEMPERATURES (SPIN WAVES)
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( Received September 19, 1977)

The tensor of spin susceptibility for systems in the Balian-Werthamer state is calculated
using the Larkin-Migdal-Czerwonko theory at nonzero temperatures, in the acoustic limit
and collisionless regime. The final results contain two first Landau parameters. The poles of
-the obtained expression are connected with spin waves. It checks out that this tensor cor-
responds to previously calculated tensors in all known limits.

1. Introduction

-The purpose of this paper is to calculate the spin, susceptibility tensor in the acoustic
limit for the B-phase of the superfluid 3He, for nonzero temperatures. According to [1]
phase B of superfluid *He is identified with the BW state. The method applied here is
based on the zero-temperature Larkin-Migdal theory [2] for systems with S-pairing
extended by Czerwonko [3] for other systems. Leggett, in [4], extended the LM theory
to nonzero temperatures. Hence, the Leggett theory gives the generalization of the LMC
theory for nonzero temperatures. Analogously as in [2-4], we assume that the system is
in the collisionless regime, and we do not include the spin-unconserving weak dipole-dipole
interaction (cf. [5)).

Let us outline the contents of this paper. In Section 2 we demonstrate that the LMC
theory can be used also at nonzero temperatures. For details see [3]' and [4]. In Section 3,
using Leggett’s calculations [6], we give the form of kernels L,M,N,O (cf. Ad)). 1t is
easy to see that these kernels pass into known ones in the following limiting cases: the
temperature tending to zero (cf. e.g. [3]) the static field cf. [4] and the normal state (cf. [7, 8]).
In Section 4 we calculate the tensor of spin susceptibility. We cannot get the final results
in closed form without imposing any restrictions on the Landau parameters. It becomes
obvious if we remember that our results have to be true for the normal liquid (T = T,).
For those calculations carried out to completion, we restricted ourselves to the case when
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only b, and b; do not vanish, but the system of equations will be given for an even more
general case (cf. Egs. (3)). )

The spin wave problems were recently investigated by several authors [6, 9-11].
Czerwonko [9] showed that the spin wave velocities at zero temperatures depend on four
Landau parameters only. Combescot {10] and Maki [11] investigated these problems
for nonzero temperatures, assuming that the antisymmetric Fermi-liquid interaction is
constant. On the other hand we know from [12-16] that only the Landau parameter b,
can be considered small. Also the experimental observations of the spin waves [17] indicate
the necessity to take into account at least two Landau parameters b, and b,. Hence the
physical arguments confirm the reasonableness of the imposed restrictions, and the precision
of the presented calculations seems to satisfy the needs of the present experiments.

In the last Section explanations of the symbols occurring in the text and some
characteristic properties of the introduced functions are listed.

2. Application LMC theory to systems with nonzero temperatures

Our one-particle Green’s functions differ from those considered in [2] and [3] because
they are Matsubara’s Green’s functions. Their Fourier-transforms have the properties:

F(p) = —=F'(—p), Fp) = —F3(p),
2 . ,
where p = (p, ¢,) and ¢, = i Fn n. These properties are the same as (1.6) in [3]. Hence

we can rewrite the whole procedure developed by Czerwonko in [3] to derive. Eqs (2.27)

by recalling that
SLEEY
— | de > T .
2n

Hereafter we confine ourselves to the system with BW pairing [1] and only to the
pairing channel in the particle-particle effective interaction i.e. f°(pp) = f= 51 L3 (pp)-
Then Egs. (2.27) of [3] can be rewritten in the form:

£

T = 6+ (BL(L—O)T s +(L+0)T "+ 207 pib;
azoyjpkﬁt 2M8ikn’cl;rﬁnﬁr]>s (13)
T = (B[(L—0)T 5+ (L+0)7 ;+207 b,

—-207 ,}ﬁk’ﬁi —2M eiknrf'rﬁnﬁr]>’ (1b)
= (A {IN+0+6.6(1-0p)];

'—201’-1pnpl 2Meikng—’;ﬁn}>s (IC)
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and expression (3.30) of [3] —in thé form

\

Xij = — ugv((L— 0)3"'+(L+0)ﬁ"+20””;ﬁkﬁ,

“zoyjpkﬁl 2M€ikn)t’;rﬁnﬁr>'v (ld)

Since the gap equation d = ¢ ffleG‘(l—Bé)cAl) is valid if d = (6p)d” then according
to our assumptions we can write 7; = (f%,G,G"(1-0,)7,>. Hence (Ic) can be rewritten
in the form

<pr[(N + O)Tm p ZOTknﬁkpnpl]> -

= 28ikn<M(gv‘,](' + )pnpr (le)

3. The kernels L,M,N, O

To compute the kernels L, M, N, O we should apply the method given by Eliashberg
[18]. Since this was done by Leggett [6] in the acoustic limit, we confine ourselves to some
clementary transformations of Leggett’s results to rewrite them in the form (cf. (A4)
and (A6))

kv . ~
L-0=~1+ [1 + —wl—_(kﬁ)] (Fo—Fy) [1~p*(kp)] ™"

N kv . «
L+0 = —fot Fo[L=f*(kp)"] "+~ (kp) (Fo~Fy) [1 - F(RpY]

20 = 1—fo+F\[1 “ﬁz(kﬁ)z]_l'

2M = —[o+ko(kp)] {1—fo+F,[1—B2(kp)*]™ 1}
N+0 = [0*—k**(kp)*] {1 ~fo+F [1- B4 kp)*]™ 1}, o)
where
_ kv ¢
P T

As we see, Egs. (2) are unanalytic functions of the variables kv and w. This causes that
the final results contain an infinite number of Landau parameters if we do not impose
any restrictions on them. On the other hand these kernels in the limiting cases where

= 0 or @ = 0 become an analytic function of kv and w or kv, respectively. This alone
aIlows one to obtain the final results in the closed form without any restrictions imposed
on Landau parameters (cf. [9] and [19]).
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4. The linear response of the system in the acoustic limit

Substituting kernels L, M, N, O defined by Egs. (2) into Eqs. (1) we find that

T = 5,4 <13 {[—1+(F0—F1) (-7
kv | A 27 an2y= 17 o
+ 2 (o= ) [6D) (L= (kD) 1)

[l —fo 4+ Fy(1 = BRDD 117500,
i +aft —fo+F1(1—ﬁz(l%ﬁ)z)"]eik,,r’;'ﬁnﬁ,}>, (32)
a R a k . . s .
7= <B {7’} (Fo—Fy) [(kp) (1~ B(kp)) 117"
[ fot Fol— B2 (RAYY 117
[ =fot (1= (kD) %]}’;-ﬁmi
ko[ —fo+ Fy(1— F2RHD 1] (Eﬁ)sik,.r’;'ﬁ..ﬁ,}> , (b
(B {[0? = kP (kp)*] [1—fo+ F (1— B2 (kD)) '1e] B
=2[1—fo+F,(1~ ,Bz(kﬁ)z)_ IJTankpnﬁi}>

= —o{(~ o)l TSBub>
Ve[~ ED) T390}
koL~ f el T DD D R
o Fo([1— BB T 5ab bR, (3¢)

yy = — v <{—1+V(F0-—F1) [1-p(kp)*] )7
kv ~ 2,0 an2 =17 i
+ — (Fo—F) {(kp) [1-P*(kp)*1 37

+{1—fo+ Fi[1=B2(kp)’ 1} T ibubi

+ w{l ~fot+F, [1 - /32(1213)2] B 1}3ikn’f§rﬁnﬁr> . (3d)
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In order to solve the formulated problem, we should assume that all b, for I > /, are equal
to zero. Due to the increasing algebraic difficulties and taking real needs into consideration,
we confine ourselves to the case, when /, = 1. Now, analysing Eqs. (3a) and (3b) we see

a

that the vertex functions 7 and 7 t are of the form (cf. (A1)).
'7; . to&j"‘tz/z;;lzj, (4a)

T = t,(kp)s;;+ t:kip;+ 15k b+ 1,(k Pk K. (4b)

Since our calculations are performed in the acoustic limit, so that only spin waves appear

as the object of our interest. If the total angular momentum J is equal to unity then the

vertex function ¥ ought to fulfil the condition %" = —7% (cf. [11,20]) and (A2)).
Such 7% can be chosen in the following most general form (cf. (A7)

15 = ToBipuk ok ; + T4 (8K Ky + €, K K;). (4¢)

Substituting vertex functions in the form (4) to Eq. (1e) and taking into account that we
confine ourselves to J = 1 we obtain

to[@*(F—3fo+ A — K (FE—Ts fo+ 4]
= —(lo+1)0G~3 fo+43)
—(t1v+t3+t7)kv(11—5—71§f0 +A43), (5a)
1[0 (G=3 fo+ Ci+ A1) —K*0* (5~ fo+ Cit 41)]

= —tow(3—%fo+ Ch+ A —t ku(ss — % fo+ Ca+ As)

—tyko(s— 75 fo+ 45). N )
In such a way a system of two linear independent equations is obtained.

After computing vthe averages {...» (cf. (A8), (A9) and (A10)) and verifying the linear

independence of tensors, we substitute vertex functions of the form (4) into Egs. (1a) and
(1b) and obtain a system of six linear equations.

to(1+% bo+3 bofo—boCo+boCo—boA3)
kv .
—1I Py bO(Cng%) = 1—1,0by(3—% fo+ C3+43), (6a)

tobo(—24; ~ B3)

+1,(1+% bo+% bofo—boCo+boCo—boC3)
kv
—(ts+is+17) — bo(C5—C3)

= —2towbo(3—Ffot+ A3 +1,0bo(3—% fo+ A3 +C3) (6b)
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kv =
_IO . 3b1(C2_C2)
«w

+1, (=L b +%b,fy—3b,Co+3b,A4})
+13by (G~ 1 fo+340) = —1.ku3b (5~ fo+ Ci+AY " (6¢)
1,3b(Fs—5 fo+ AL)
+13(1++ by +2 b, fo—3b,A5+3b,A})
= 1,ko3b (35— 15 So+ AL (6d)
(t +t3+1)3b, (55— 15 fo+ 43)
+ts(14b,+3b,A5—~3b,A%)
= Toko3b(T5—1's fo+ Aa), (6e)

1 ke 1 0
t13blB4_+ tz — 3b1(C2 . Cz)
w

+133b,(—2A45— B+ B})
+153b,(—243— B3 +245+BY)
+t,(14+2b,+3 b, f,—3b,CO+6b,As+3b,B})
= —Tokt3b(+—% fo+3AL)
+7,ko3b (=1 fo+Cl), (6f)

Eqgs. (6a, ¢, d) contain f,, t,, 5 and one parameter 7, as the unknown quantities. Hence,
they can be treated as a system of three equations for three unknown variables.
Adding Egs. (6a) and (6b) we get

(fo+13) (142 bo+4 by fo—boCo+boCh—boC3)
kv . o
+(tl +t3+t5+t7) ‘w‘— bO(CZ-CZ)
= 1=21,wbo(5—3 fo+A3), (7a)
Adding Egs. (6c, d, f) we get
- kv ' o.
(to+1,) S 3b(C3—C3)
+153by(—245— By +2A+B})

+(t b +1) (1 +2 b, +2 b, fo—3b,C3+6b, A} +3b,By)
= —1okv3b,(}—+fo+3A4.), _ (7v)
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From Eq. (6¢) we find 5. Substituting ¢5 into Egs. (7) we obtain the system of two equations
for two unknown variables (¢,+17,) and (¢, +1; +1;), and with one parameter t,.
Let us now consider expression (1d). Substituting (5) into (1d) we obtain

Lij = —ugy {[ to ’“%“%fo"‘Cg_C(l)“‘A;)
ko o 22 iy bes — kR
+t ;(CZ—CZ)—le(§——3;f0+(/2+A2) (i, —kik;)
+ [(to"'tz-)(_%;%fo‘f'Cg“C(l)"'C;)

kv s
+(t +ts+1s+17) Py (C3—C2)=2t00(3—3 fo +A;):l kikj} . @
Solving the systems of equations given above and using Eq. (8) we obtain the spin suscep%i-
bility tensor in the following form:
2 = VST —U'V) (0= kkp)+ W™ " (X =Y ' Dkik;], %)
where
S = 1+2 bo+% bofo—boCo+% boCo+% boCy,
T =3+5fo—Co+3 Co+3 Cy,
U = 0’(G—3fot+3 Co+4 C (14+bofo—boCP)
— (=5 fo+ 3 Ch+5 C) (143 bo+3 bofo—boCo+5 boCo+3 boC2),
TV =0’G-3fotz Cot3 €)Y
W = 14+2bo+%bofo—boCo+byCo—boC3,
X =3+3fo—Co+Co—Cs,
Y = 0’ (3 =3 fo+3 Co—% C1) (1+bofo~boCo)
. kzl’z(Tl?—Tl?fo +% C; _% C};) (1 +% b, +% bofo= bOCg + boCOI - bocé)’
Z = 02—} fo+3 Co—1 C3)"
Here the expressions S...Z are given when b, = 0. The complete forms of these expressions
are presented in Appendix B.

Let us discuss now some properties of the obtained formula (9). Using (A12) we
see that this formula is in agreement with those all known limits (cf. {5, 6, 9, 19]). It
is obvious, since the kernels L, M, N, O have these properties, too.

Spin waves are connected with poles having spin susceptibility (9). Some of the poles,
considered by Combescot [10] and Maki [11], corresponded to zeros of U and Y.

Let us go onward to investigate the spin wave velocity for the transversal mode if
T — T,. Applying (A12) we see that the internal fraction U~'V vanishes in this limit. It
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is therefore understood that the superfluid phase vanishes and this type of spin waves

has to vanish, too. In spite of this, let us consider the denominator U of this fraction,

mainly its zeros. Applying (A10) and (A12) again we obtain that the solutions of this
W

equation s(z k~) tend to zero if 7.— 7,. Hence for T = T,. the transversal spin waves
v

velocity equal zero. A similar result can be obtained for the longitudinal mode. The

external fraction has no poles in this limit if /, = 0 (cf. [5]).

5. Conclusions

The method developed in this paper can be applied in all cases considered by the LMC
theory. One can extend this method for the case when more than two Landau parameters
do not vanish. The difficulties connected with the computation of the higher rank deter-
minants are the sole difficulties. In the conclusion we should emphasize that the infor-
mation obtained about the system *He—B ought to satisfy the present experiments.

~ The author is greatly indebted to Professor J. Czerwonko for suggesting this problem
and for many useful and instructive discussions.

APPENDIX A

In this Appendix all introduced symbols are collected and explained. We also give
some characteristic properties of the functions used.

The bracket <...> denotes the averaging over spherical angles. The w and kv are
measured in units of 24. The normal vertex function (cf. [3])

e

FAp) = T’ = 7o,
T = LT+ TH =D,
T = LT - TP (A1)
The anomalous vertex function (cf. [3, 9])
T(P) = Ti(P)o’,  THP) = T b (A2)

The exchange part of the dimensionless effective interaction in the particle-hole channel,
1.e. the antisymmetric Fermi-liquid interaction is

B(pp) = ¥ QI+DbP(D),

B = 3 [B(pp")+B(—pp)],

B = 3 [B(pp")—B(= )], (A3)
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For a different definition of Landau’s parameters see, e.g. [5]. The kernels L, M, N, O

in a matrix notation (for details see [3,4, 6] and [18])
L = G(p)G(p)—(G*(p))*,
M = G (p.)F(p-),
N = G(p)Gs (p-)—G(p)G™(p),
0 = F(p)F(p-),
where p, = ptq and g = (k, w). The introduced function is

dn

Jo = f de (E) — Yosida function,
0

dn\ 42
= dﬁ——z
dE | E
0
. sl o é dn\ 4>
\ae ) VT C\GE )
0

0

dn 1 E
— )= —ch™* =, E?=g*+A4%
(dE) T 2T o

The introduced functionals are

where

The formulae used in this paper are

Eijn = Eijp pk kp 7T Cpnfipki

cf. [9]. The averaging formulae are
1

(n+ 1)“ (Z 5a1ai 5a_,-ak),

LBay - Bay =

where the product of deltas contains n/2 factors and the sum (n—1)!! terms.

1 o - (n—1)

(kp)'Pib;pr> = (+2)(n+4)(k15] +k,5;+k151)+( +2)(n+4)kkk
HaA A ) 1_ n L.k
OB = (4 ey O Tty (3
R 1
Lkpy'p> = —— ki,

n+2

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)
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N 1
{(kp) = i1’
1= B2Ckp)*] ™ (k)" pib s>
= A (k0 ;+k;0,+ ko) + B kk K,
[1=B2Ckp)*] " kpy' 2 pib >
= A,8;;+QA,+Bkk;,
<= p2kp)*]™ ' (kpY' ™ B>
= (34,+ Bk,
([1=p2(kp)*]""(kp)"> = 34,+B, = C,,

g
. It is easy to remark that

b 8 kv

where f = — —
w E

—2_% era

Cn—27

4,=1C,
B,=3C,—

P o=
Njw

and
1 R
C, = ﬂ_”(Co—1~%'ﬁ2~ - /3)
n—1

where the function 1—C, is the same as the Lindhard function (cf. [5]). The form of the

functions C° and C, are
N A
C° = FoC, = | de c,,
dE
0

T dn\ 47
C ,=F1Cn de = ﬁiCu

' dE | E=
0

(A10)

(Al11)

and 4°, A and B, B! are analogous to (All). The properties of functions fo, f1, ce, Ch

are
. kv . koo
lim — C, = lim —C, =0,
w=0 @ w=0 O

lim €O = —fo, fimCl= —f
= e fy, limC) = —f,
k=0 * n+1"" e n+1’?

T =0; fo=f1=cy?=,'c>;=0,
T=Tc; f0=1’ C,‘,)=Cn, f1=C;=05

T-T, (1-fo)~4> €, ~4C,

(A12)
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APPENDIX B

In this Appendix the forms of expressions S...Z are presented for the case where two
Landau parameters b, and b, do not vanish. Since we do not want to introduce extra
symbols, they are quite lenghty.

S =(1+%2bo+3bofo+boCo+LboCl+1byCH)
x[(1+%b,+2b,fo—3b,C3+3 b,CL—3b,Ch)
X(1+E+by+3b,fo—3 b, Co+3b,CO+3b,C—3b,CY)

~biG—%fo+3} C3—3 C)] )
k2? .
- ;2-31)0171(02—@)2
x(L+3 by +% by fo—3 b,Co+3 b,C3+3 b,C3—3 b,C)),
T =G+3fo—Cot+3 Co+%C))
X[(14++b;+% b, fo—3b,C5+2 b, Ch—3 b,Ch)
x(1+3 b +%bfo—3b,Co+3b,C3+3 b,C3~3 b,Ch
—biG—tfo+3 C3~3 C]

- - lgabl(cg—c;)2
x(1+5bi+%b,fo—3b,Co+3 b, Co+2 b,C—32 b,Ch),
U= 0*3~%fo+3 Ci+3 C) {(1+bofo—boCY)
x[(1+Lb,+2 b, fo—3b,C3+3 b,CL—3 b,Cl)
x(A+5bi+%bifo—3b,Co+3 b,CI+3 b,C3~3%b,C})
—bi3~3fo+3 C3—3 C]

2.2

= o7 bobi(C=CH[(E~4/o+3C3-3 C3+3 CY)

x(1+5by++b, fo—3b,Co+3 b C3+3b,C3—3 b,CY)
+2b(G—5fo+3Cy—3 Ci)zj}

— k(=5 fo+ L CL+1 Ch)
x {(1 +5 bo 3 bofo=boCo+3 boCo+3 boC2)

X (1+b; —3b,C3+3b,C3)+3byb (CI—CH)
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o kZUZ
I |: $-%fo+2Co+3C)— — (Cg_ci):l}
x(1+3b,+%b,fo—3b,Co+3b,CI+3b,Cy—3 b,C))
~K*0*3b,({5s— 5 fo+3 C3~3 CI)*

x [(1 +2 bo+% bofo—boCo+% boCo+% boC3)

k2 2
x(14+b;—3b,C5+3b,C})— —1;— 3b0b1(c2—c;)2],.
w

v = o {G-thrtChrich

x[(1+5b+% by fo—3b,C9+3 b,C3—3 b,CY)

x(1+3by+%b,fo—3b1Co+3 b,C3+3 b,C3—3 b, Ca)
. k*v*
B HfotE CI-3 O+ o bi(C-CY)

x[(1 +% by+%b,fo—3b,Co+3 bng-l‘-% b,C3—3 b,CY)
2
(=2 fot3 Ch3 Chbi (b= ford Ci—2 cm} ,
W = (14*%“ b0+% bofo“bng'FboC(l)"boC;)
x[(1+%b,+2byfo—3b,C5—3 b,C3+% b,Cy)
x(1+by—3 b,C+3 b;CI+3 b;Co—3 b,C3)
—3bi¢—1/o+3 Ci—3 C) (C3—3C3—Co+3C))]
k2
~ 5 3bob,(C3—C3)?
w
x(1+% b+ by fo—3 b,CO+3 b, C3+3 b,C5—3b,C3+35 b;Ca),
X =F+3fo—Co+Cs—C3)
x[(1+% by +3 b fo—3b,C5—3 b;C3+3 b1c‘:1¢)
x(1+b;—3b,Co+3b,C5+3 byCs—% b,C3)"
~3 b3 —1 fo+3 C3—3 CH(CH—-3C5—Co+3C1)]
K0?
o 3b,(C5—C3)°

x(1+%b,+1 by fo—3 b, C+3 b,CI+3 b,C5—3b,C3+3 b, C2),
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Y = 0’(3—3fo+3 Co—3 C3)

x {(1+b1——2~ byC8+3 byCa+3 b,Ch—3 b,Ch)

X {(1 +bofo— bng_)

x [ 'F% b,+% b1fo—3b1Cg_% b, C;‘F%'IHCD
x(1+by—% b, Co+3b,C9+4 b,Cs~3 b,C})
-3 biG—1/fo+3 C3—3 C)(C-3C3—C4+3C3)]
k*? .
— —5 3bob,(C3—CY)?
w
x(1+%b,+%+b,fo—~35,C0+3 b1,c(2)+’23‘ bICé~3b1C§-{—% b1Ci)}
2.2 )
+ P bob1(Cg‘C§) %“%foﬂ'% C;—% Ci)
x[A+%b,+2b,fo—3b,C9~3b,C5+5b,CY)
x(1+b;—=3b,C3+3 b,C3+3 b;Cs—2 b,Ch)
-3 biG—+fo+3 Ci—3 CH(CH-3CI-CL+3C))
=3(1+%b;+5byfo—3 b Co+3 b,C3+3 b C5—3b,C5+3 b,C))
x(1+b1—b1C8+b1C},)]}

— kP (Es—Fsfo+: C3—L CY)
x(1+b,—3b,Co+3b,C5+3b,C5~2b,C3)?

X {(1 +% bo+3 bofo—boCo+boCi—boC3)

X (14 by —3b,C3+3b,C1)+3bob,(C2—CY)
2y i
X [%'%fo'}‘cé"cé)— o (Cg“ci)J} ,

Z = {0*3-%/o+C5~C3)
x[(1+%b, +% by fo~3b,CI~3 b,C}+% b,C})
x(1+by—3 b Co+3 b;C3+3 b, Ca—3 b,CY)
—3 Bl —1fp+3 C3—3 €l (CO—3C3—Ch+3CH)]
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x(14+b,—3b,CO+2b,CI+3 b,CL—2 b,C})
‘kz 2b1(C° Cz)("—sfo‘f'z Cz 3 Czlt)
x[(1+ b, +3 b, fo—3b,C3—3 b Ci+2b,C)
x(1+b;—% b,C+3 b;C5+% b,C5—3 b,C3)
=3 biG—+fo+3 C3—3§ C) (Co—3C3—Co+3C3)
~3(1+% bﬁ‘%-bifo—,}z‘ b,Co+3 b,C3+3 b Co—3b,C3+3 b,C3)

x(1+b1—'b1C8+b1C$)]}{(—§— 3fo+ Ci—3C3)

x[(1+% b, +2 by fo—3b,Co—3b;C3+3 b,CY)
x(1+b; -3 b,Co+3b C2+2 b,Co—32b,C))
3Bt Ch-3CHC-3C3-Chr3Ch]

2.2
+

b(C5—CG—+fo+3 Ci-3 CD)
><(1+b1 3 biCo+3 b, Co+3 bl'cé—%_b.lc;)}'.
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