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Characteristics of the Korteweg de Vries (K-de V) equation are found in three dimen-

sions. As in the one dimensional case, the equation is hyperbolic and both wave and
soliton solutions are stable. Previous results are recovered as special cases.

1. Introduction

We will consider the problem of the stability of ion acoustic waves and solitons in
a two component plasma in which the electrons are hot and weightless and the ions are
cold (m,/m; — 0, T;/T, — 0). The relevant equations are, in dimensionless form [1]
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Here n is the density, ¢ the electric potential, and u, v, w are the x, y, and z components
of the ion velocity. The z coordinate will be cyclic in our problem.

In this analysis we will consider modifications to stationary solutions (functions of
X = x—Ut). These modifications will be described by their géneralized fourier-laplace
components with space and time dependence given by a function of x times '*"*+o9,
Without loss of generality we can choose our coordinate system so- that

k = (ky, k,, 0) (1.2)

and so z will be cyclic.

The primary wave or soliton propagates in the x direction with consant velocity U.
We will not investigate the full system (1.1), but a model equation for it. If we introduce:
stretched coordinates according to the scheme

E=ePx-Ut), =28 n=ey, (1.3)
assume amplitudes of all waves and solitons to be small and of the form
n=1+en'V+ .., u=zaP+ ..,

v=%Vp L @ =edP4 ., (1.4)

we obtain the three dimensional generalization of the K-de V equation. (It is often called
the two dimensional K-de V equation as z is cyclic.) It is, with n") = ¢ = 4(V/U = ¢
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For v = 0 this equation reduces to the ordinary K-de V equation, obtained by the
above method by Washimi and Taniuti for the first time in this context [2]. In its present,
two dimensional form it was obtained first phenomenologically [3] and, somewhat later,
rigorously [4]. Both [3] and [4] go on to obtain stability when k, = O for the soliton limit.
The present analysis, which is general in & and amplitude, will agree with these previous
results for that very restricted case.

2. Basic wave and soliton solutions

We start with a stationary wave or soliton solution to (1.5), depending on X = é— Ut
only. Integrating the first equation in (1.5) twice we obtain successively
d*¢,
o p)
dX:

g(fl?i) = Cgpog—4 $3+D. 2.2)
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Here C and D are constants. Physically meaningful solutions exist if the 3right—hand side of.
(2.2) is nonnegative (if o« > 0). When C is fixed this will occur for D varying between
a minimum value, corresponding to the linear wave limit, to a maximum value correspond-
ing a soliton. Intermediate D give nonlinear waves, often called cnoidal waves. Their
form is so well known that we will not go into them in any more detail, a good refe-

rence being [5].

3. The dispersion relation for modulations

Now assume the solution (2.2) to be perturbed. The modulations will be ~ f(x)e® ron,
f(x) periodic, and

@ = Poté¢ v = ov 3.1
We wish to find the dispersion relation
Alw, k) =0 (32)

so defined for a nonlinear problem. There are several methods for doing this and they are
outlined in [6]. Here we work in the X, z coordinate system and k expansion will therefore
be particularly suited [7]. To obtain the characteristic velocities we then add U to dw/dk
found from the dispersion relation. So assume k& small and

k = k(cos 0, sin 0)
0 = 0o+ kdp, +k*5¢,+ ...,
oo = dvg+kdv, +k*dv,+ ...,
o = o (Ok+w,(0)k*+ ..., 3.3

thus only long wavelength modulations will be considered.
Equation (1.5) becomes (we no longer capitalize x)
2

d d . :
o 73 0P+ ™ (Bo00) = —iwdd—ik cos 0¢,6¢
—a[3ik cos 86¢,.,,—3k* cos® 05, —ik>5¢] — L k sin 65y,
d
In dv = —iksin 86v+ ik sin 06¢. (3.49)

The zero order solutions are

ovo =E 0@y = dpo/dx. (3.5)
The second equation in (3.4) is, in first order
d . .
— v, = —isin 6E+isin Odg,/dx. (3.6)

dx
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‘Since dv, and @, are periodic in x, upon integrating over a period we obtain E = (. The
first equation in (3.4) gives, in first order

2 3

—-—d3 00, + d(¢ 0¢,) = —i 6¢—~'cos0——d —¢° —3i ()—d i (
— = —iw i :
X OO g o0 — dx 2 et Po- 37

Integrating we obtain

2 2

d
o e S +Po0¢, = —iw Go—icosl -%0 —3io cos 0@y, +C;. (3.8)

The homogeneous equation corresponding to (3.8) is solved by dgo/dx and

d d d _
7?;9 j 6 /tix) 5 = xﬂ% +Qu(x), Q, periodic 3.9
0

(we have decomposed it into its secular and periodic parts). Using (3.9) it is not difficult
to construct a nonsecular solution to (3.8)

5y = ¢, cos 6, (3.10)

0@, = —id+ iéé(xn 7;-Qo(x), (3.11)
where
- o = @ cos b, C1=écose,
¢x J‘% dx = x’)’¢x+Q1(x)r
C=C-iC, Q=20:—/BQ. (3.12)

We ;;vill also need (@,0¢,> and <¢35g131> in further calculations. They are obtained
by multiplying (3.8) by ¢, and ¢ respectively and integrating. Finally dv, is. obtained
from (3.6). Collecting all these results ’

5, = —id;+ ClaQ+i/fQo.
ov, = isin 8(gy+D),
($o0By> = —idd,+C,
1(930,> = — (o> —id{ g5y +2ial B3> + CL Po)- (3.13)
Second order
The second order dv equation is
Zgé v, —sin 0 cos (o +D) = i sin 0 cos 03¢, (3.14)

and so

D = — (B> —i3;. (3.15)
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The d¢ equation becomes

d? d ) . ,
o—50¢,+ — (Pod0Py) = —iw,0¢,—iw 66, —icos 0%00¢,
dx dx
— o[ 3i cos 08¢, —3 cos” B3¢0l +7 sin? 0[ go— (@o) — iG] (3.16)
When we integrate over a period and invoke (3.13) we obtain a condition on C

0+ 1g>0) <~os+ “i;”) — <o)

iC=——-— ——— _— (3.17)
1+ -<0> (0+318" 0)

The dispersion relation is now obtained by multiplying (3.16) by ¢, and integrating over
a period. The left-hand side is zero by (2.1) and so

— i, { BB > —I{BEOBs> — 310 PoxxdP1> — 30 Box)

+1tg? 0[<@5y —(Bo>” — o) <9$:>] = 0, (3.18)
yielding

i 1
— (P> +(ACo +3 (B0 t8° 0) (—@1 * <Qo>> + <82y
S gLy 4t O[(B2> —<Po*]
N 1
[<¢0> —d)—Q/oc(4C0+% <¢o> tgz—, 0)] l:((ﬁl +% tgz 0) (“‘&H‘ F <Q0>> “d)<¢o>:l

+ — B = 0.
1+ ;<Q>, (O+3tg” 0)

This is our dispersion relation involving, in principle, only w, k, 0 and the constants that
determine the nonlinear wave.

4.'The dispersion relation expressed as a cubic in w/k

- “To simplify (3.19) we first note that the transformation

x=.3az, ¢,=+C¢ D=¢6 (4.1)
reduces the number of constants in (2.2), which becomes
dgo\* .
i ——0> = go—Po+<. (4.2)
© T \ dz

To work in the new notation we take a =13, C=1/6, D=¢[6. It will also prove
convenient to introduce

Y = 5(¢5.>—3¢ f—*_"»<5¢o_—5¢3+2€>- (4.3)

We will be able to express this quantity in terms of complete elliptic integrals.
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Now write (4.2) as (using 3.1)

d¢0 ) 2
< d ) = % ¢0 +—3T ¢0¢zz+€' (4'4)
\ z

Dividing by $3, and integrating over a period we obtain

T=%y+Ep. (4.5)

Similar manipulations yield
Qo> = —y+B{Bo,.
Qo> = —$4Q>+3 {0,
3485 = E+%<B0)
—~3<Po> = Ly +3 P (4.6)
If we now add the identity (3.12)
(0> =<0 >—=0(IF)<Qo> 4.7

we will total enough equations to determine (0, (Q,>, B, y in terms of {$2.>. However,
notation is simpler if we use Y in place of {@3,>. Simple algebra gives us the following

_ y: -4
<Q0> =3z Y, <Q> . 4(Y+3f)

Qo> Y?+6YE+4

B 2Y+38) (48)

So Y is the only function to be evaluated. After some simple calculations we obtain

$—¢
Y = 2¢_ s +[p— ¢ JEG)KGD), s = ——2 4.9)
¢1 - ¢— 1
where ¢, @y, ¢, are the roots of ¢ ~@¢3+¢ in decreasing order, and E and K are complete
elliptic integrals.
It is now a matter of straightforward if lengthy calculations to obtain a cubic in
wl = w/k

(w/k)*(w[k cos 0+ sin? )+ .

Q1E-48/27 , SY+EYZ 4128,
—— 0—% ——— sin® 8 cos? @
Yioay—8z > "7 yi_gy_ge

3Y(Y+6&)-+4
2(w/fk) :S +68)+ 2 cos? 0+—§- sin? 6 cos 0)
3 Y’-4Y+8¢ :

o(L_1 Y22
—(;-—‘*-—2,-- sin*0 = 0
Y3 —4Y 8¢
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w/k

8=0° §=90°
Fig. 1. Phase velocities w/k as a function of the nonlinear amplitude variable § for chosen values of 8.
The & value at the extreme right corresponds to a soliton

Fig. 2. Polar plots of w/k for three & values. Each plot pictures one physical situation
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The three solutions to the cubic are real and are given in figure 1 for chosen values of the
angle 0. Figure 2 shows polar plots of phase velocities for the wave amplitude variable &
fixed. The three plots are for: the linear limit; a nonlinear wave; and the soliton limit,
which is of particular interest now-a-days.

The characteristic velocities, which are identical to group velocities as defined here,

will be obtained from
, , ,  do o 1 dw
v, = Us+v,, v,= =

" dk  \ok’k a0
in cylindrical coordinates. Thus w/k found from the cubic is the radial component of v,.
The Riemann invariants on our three characteristics are ¢_;+@o, ¢, +&1, Po+b, [5].

5. Various limits

1. In the linear limit ¢ — ——2/\/ 27 (4.10) yields the roots
/k 2 0 2 '0 ! 0—% sin® B/cos 0
WK = ——C0S U, —— COS U, — —=—COS U —5 SIN .
NE 7 3 3 cos

They agree with the values obtained from a linear calculation, though one root appears
twice. The duality is a linear token of the fact that this root splits in the general, non-
linear case (figures 1 and 2).
2. In the soliton limit & — 2/,/27 the cubic becomes
2 . 2 1 ofo 2 .2
(w/k)([w/k] cos 8+% sin® ) — —= - (7 cos® 042 cos 6 sin 9)

NE

e
+2sin? 0 cos® 0 — ——sin* 0 = 0.
J27

solved by

2 ) 2 0 ! 0 —% sin? 0/cos 0
— [——=sin0, [—==sinf, — cos O—3 sin? O/cos 0.
V27 J27 NE z
At 0 = arctg v 2//3 zero is a root. For @ = /2 we regain the result of [3] and [4]

(ofk = +V 2/\/27). See also point 4.
3. The one dimensional case is surprisingly simple

ofk = =3 (%~ B0) ($1—2-) (Y=26))"" = 3 ($:—@0) 1 —E/K)™"

W=

E -1
ofk = ~3(Fo—-1) (o= %) (Y=200) ' = 1 (@, ~¢0) (1-5) (}— —[1—-s2])

ofk = —%($1—9-1) (Fo—9-1) (Y—28_1)7" = 3 (1~ $o)E/K.
These values were first obtained by Whitham [8] by a different method..
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4. Finally for 0 = n/2 we have
ok = +(G—-3 Y (Y’ -4Y-8¢) "2

One root has disappeared. It corresponds to a sound like mode perpendicular to the
wave and for it w/k = co. This is consistent with the expansion, since 8/0y ~ ¢~*/? and
d/ot ~ &=%'2. Therefore the velocity of sound, which was one (and therefore of order zero)
" before we introduced stretched coordinates, will now appear to be infinite (of order 1/g).

6. Summary

Nonlinear ion-acoustic waves and solitons satisfying the Korteweg-de Vries equation
are three dimensionally stable. There are in general three distinct values of the phase
velocity w/k. In the vicinity of + /2 one value of w/k tends to infinity, whereas the other
two become symmetric.

The question of relevance to the full problem as described by (1.1) still remains open.
In one dimension some stability properties of K-de V as compared to the full problem have
been demonstrated (in the sense that the discarded terms do not alter the equations too
drastically). This has been done by general arguments [9]. In [6] we will solve the problem
of finding three dimensional characteristics for (1.1). It will then be possible to compare
the results of this paper with the solution to the more physical problem, thus obtaining
a check on the validity of K-de V.

The authors would liké to thank Professor J. K. Dabrowski for his interest in this
paper.
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