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Up to now the existence of the inverse superoperator N—! appearing in the simplest
convolutionless exact master equation (EME), namely Fulifiski-Kramarczyk master equa~
tion, has not been proven in the general case. Recently we have constructed this superoperator
for Kreuzer-Nakamura model. In present work we show the existence of superoperator N~—*
for Friedrichs model, widely investigated by Brussels school in the resolvent formalism.

1. Introduction

Standard method of investigating the time evolution of classical and quantum systems
is so called master equation (ME) formalism. It describes the time dependence of certain
quantities (usually density matrix or some observables) split on “relevant” and “irrelevant”
parts with the use of a projection superoperator. Although this method is purely formal
and fully equivalent to using original Liouville-von Neumann equation, it serves as
a convenient tool in making various approximations (e.g. density expansion, weak-
-coupling limit) and in investigating of asymptotic properties (long time approximation).

First exact ME was derived by Van Hove [1]. A great impulse into studying such
equations was given by Zwanzig [2] and Nakajima [3] who introduced projection operator
method. In those times there was a belief that the only possible form of the exact ME was
of the convolution type which suggested nonmarkovianity of an exact ME. This type
of EME was widely exploited, particularly by Prigogine and co-workers [4-6]. Next the
Brussels school worked out methods of investigating the approach to equilibrium leading
to the asymptotic markovian ME [7].
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There are two types of the exact ME: nonmarkovian and markovian, the latter first
derived in works of Fuliiski and Kramarczyk [8-11]. Although this kind of ME was
further investigated by many authors [12-16], they are not in such common use as the
nonmarkovian ones. One reason is that usually markovian forms of ME are obtained by
various approximations from nonmarkovian ones, which created a view that nonmarkovian-
ity is inherent in the exact time evolution. The other reason is that although Lugiato [17]
has given a rigorous proof of the existence of certain forms of the markovian ME,
such a proof of the existence of the simplest markovian ME, namely Fulinski-Kramarczyk
ME [10], is -lacking in the general case.

This gap was partly filled by us by constructing the superoperator N-1 for the Kreuzer-
-Nakamura model [18]. In this work we give still one more example, namely we construct
this superoperator for the Friedrichs model, extensively investigated by Brussels school
and other authors by means of the resolvent formalism [19] and of the theéory of
subdynamics [20-22]. Our hope is to show a possibility of extending the use of markovian
ME on systems with more complicated interactions. We believe that this approach can
also be fruitful with respect to devising various new approximation schemes.

2. Markovian master equations

There are two types of generalized (exact) ME obtained from the Liouville-von
Neumann equation

ido(t) = [H, o] = Lo, h =1, (1)

by means of the projection operator method. The projector P picks out from the density
matrix the “relevant” or “interesting’ part, called the master part. The first one, of the
convolution form, was derived in a general way by Zwanzig [2] and for particular cases
by many others [23-27]. It was extensively studied by many authors, especially by Prigogine
and co-workers [4-7]. Recently, it was generalized to describe open systems [28-30].
The form of this ME, given by Zwanzig, is

8,Po(t) = —iPLPg(f)—iPLe™"®Qo(to)

t
- j‘;dthLe‘iQL“QLPQ(t-—tl), 2

where Q = 1—P.

The other type of ME, without convolution, is called “markovian’ ME. It was derived
first by Fulifiski [9]. The simplest convolutionless ME was derived by Fulifiski and Kra-
marczyk [10]

8, Po(t) = (3,N)N~'(Qa(to) + Po(1)), €)
where
N = 1+ P(Z(t, ty)—1), )
and Z(z, t,) is the time evolution superoperator defined through the relation

o(®) = Z(1, to)e(to)- &)
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Lugiato [17] gave the rigorous proof of the existence of two similar ME

0, Po() = (3K KT (20(to) + Po(t)), (6)
0,Po(t) = (9,K2)K3 (2 —1e(to) + Qo(to) + Po(t)), (M
where
K, (t, ty) = o+ PZ(t, t,), areal, |af > 1, (8)
K,(t, to) = a+P(Z(t, t,)—1), areal, o > 2. (9)

The most general form of EME, containing both above possibilities and additionally
“shifted markovian” EME and EME with partial memory, was given recently by Fulinski
[31]. It was shown that for suitable choices of superoperators it is formally possible to
obtain EME with desired properties, e.g. Zwanzig ME, Fulinski-Kramarczyk ME, Shimizu
ME [14] etc. by direct transformation. All these forms are mathematically equivalent and
carry the same physical information if certain superoperators appearing in these equations
exist.

3. The Friedrichs model

The model we will deal with belongs to a class considered first by Friedrichs [32].
This model has been used by Brussels school [20-22] which examined the ergodic prop-
erties of quantum systems and tested subdynamics and transformation theory on that
model.

Middleton and Schieve [19] have found the explicit solution of the Prigogine-Resibois
generalized ME in the special case of the Lorentzian interaction and of the spontaneous
emission initial conditions. They also calculated the collision operator y(z) for this model.

Following them we choose the basis consisting of a state |E) and a nondegenerate
continuum of states {|w>}. The orthonormality of these states is assumed:

CEIE) =1, (oo =iw-w), <(Ew) =/ {o|E)=0. (10)
In this basis the complete Hamiltonian has the form
H = E|E) {E|+ | doo|a) {w|+ [ doV(w) (o) <E|+|E) {}). (1D

Further we assume that V(w) is a real function. The Liouville superoperator in the above
basis has the following nonvanishing matrix elements:

Louey = Lgyan = V(@)o(u—), (12)
Ligwo = Lyove = —V(@)d(u—v), (13)
Lopee = Lppor = V(), (14)
Lpore = Lpgpo = —V(w), (15)
Lpory = (E—-w)d(0—p), (16)
Lopur = —(E—0)d(0—p), 17
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The time evolution superoperator Z(t, f,) can be calculated directly from the von
Neumann equation
0,Z = —iLZ, (19)
or by means of the time evolution operator U(Z, #o)
Znmtw = U Un- (20€)
We first calculate the operator U. This operator fulfills the equation
Q.U 1) = —iHU(t, 1). 1

After performing the Laplace transformation of Eq. (21) and exploiting the fact that
considered Hamiltonian is time independent we obtain

sU(s)— U(to) = —iHU(s). (22)
From now on we put f, = 0. Let U(0) = 1. Then we have
sUpe(s)— 1 = —iEUe(s)—i [ V(0)U x(s)deo, ) (23)
5Uoe(s) = = iV(@0)Ugg(s) — iU x(5), (24)
and thus )
Gur®) = = e Ul @9)

Putting (25) into (23) we obtain

~ V U) 2 -1
Ugi(s) = [s—\—iE—l— J 4t .)] dco] . (26)
) S+iw
Let us assume that the interaction has the Lorentzian form
V(@] = 27’ [(0— By +y"17", (27)
where y is the peak width and A its height. Now, we have to calculate
V(o)
G(s) = j[ ( ,)] dow. (28)
s+iw
For interaction (27) and with assumption that @ changes from —oo0 to +00 we obtain
+ o0
Cdw 7
G(s) = 4* e - (29)
(s+iw) (w—E—iy) (w—E+iy) i(E—iy— is)
Then
s+a Y 1 .
Ugx(s) = (30)

R — - _*___ — N
(s+a)+b* = 2 (s+a)’+b?
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where

y+2iE

e, b2=y(n,1—1). (1)

4

The inverse Laplace transform of the expression (30) gives us the value of the element
Ugx(?)
Ugg(t) = e (cos bt+ 211) sin bt) : (32)

We can calculate the element U,g(¢) from Eq. (25), inverting the product of Laplace
transforms. Then we get

_iV(w)e—i(ot e i ,y ]
UmE(t) - (a__ lw)2+b2 {e ( )t[('z —a-+iw

N

« sin (bt)— <V(a2;2i°°) < b> cos (bt)J + V(“z;iw) —b}. (33)

Since operator U is unitary and V(w) is real,

For the sake of completeness we also give the expression for U, (f)

t
Upu(t) = e S(0— ) — iV(w)e ™ | & U, (1)dt'. (35)
0

4. Fulifiski-Kramarczyk equation for the Friedrichs model

The Fulinski-Kramarczyk ME for the Friedrichs model has the form

0,055(t) = Frpprops()+ j (F EE‘EmQEm(O)

+FEEa)EQmE(0)+ j FEEma)’Qmm"(o)dw’)dw' (36)
We have used the projector P of the form '
(P)mnpr . 5mE5nE5pE5rE9 (37)

which picks out from the density matrix the diagonal element representing the probability
that the discrete state is occupied. The superoperator F is defined by the relation

E@t) = [aNMINT'(). (38)

For the above choice of the projector the only non-vanishing matrix elements of N are
Negmn = Zggwms, (M0 # EE), (39

Nippo = (w—w), (40)

Nppe = (@ —=v)o(v—E). (41)
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The matrix elements of N-! can be calculated from the definition

(NN Dgr = (N7 Npnpr = 811300
As a result we have
| (N —1_)EEEE = (Zepsp) (42)
(N egmm = ~Zggm(Zgeps)~'s  (mn # EE) (43)
(N Dpoker = (N Dopos = S@—a), “4)
(N Damg = S@=0)8(u—&). (45)

Now we can write down all needed matrix elements of the superoperator F:

Faer = (0Zpses) Zese) ™ (46)

Frepo = (Zigie)” (Zeese0Zspso — Zepso0:Zursr); 47
Fygor = (Frrpo)™ (4%)

Firpoew = 0 Z5E0w- C))

Having determined U(¢) we can evaluate all needed matrix elements of Z. These are

2
Zegrp=¢ (cos (bt + ml_ sin? (bt)+ —b sin (2bt)) (50)

Zizor = —Cy(@)e™ [Cz(a)) cos® (b)) F 2—1—;); (E— ) sin” (bt)
((E w)F + Cz(co)) sin (2bt)] + Ci(0)Cy(w)

G —i(E_w))’(cos (b)+ 5{—* sin (bt)) , (51)
Zigoar = C1(@)CH(@)e™ T [em O HOm o
(Co(@)Ci(w’) cos® (bt)+(E —w) (E— ) sin’ (bt)
— 5 i(C3(0) (E~ ) F Cy(w) (E—)) sin (2b1))
—e T (C(0)CEH@') (¢F° 4 &7 *E~9%) cos (bi)

—i(C3(@) (E=w)e” "E7" T Cy(w) (E~)e'® ™) sin (b)) + Co(@)C3(@)],  (52)
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where
iV(w)
Cy(w) = (—a—ia))2+b2 > (53
2b3 —y(a—i
Co(w) = 725:2 w)), (54)

and upper (lower) sign relates to the case of real (imaginary) b.
Calculation of time derivatives of Z is straightforward and the results are not presented.
Now when we have obtained the superoperators appearing in Eq. (36) we have found
the exact solution to the dynamics of the considered model. If we assume that for 1 = 0
ege(0) = 1 and all the other matrix elements vanish we find

0pe(t) = Zppee(1), (55)
where Z (1) is given by EqA. (50). As expected, this solution agrees with the one obtained
by Middleton and Schieve [19]. When & is a real number, we obtain damped oscillatory
decay of the excited state, and for imaginary values of b we have monotonic exponential
decay.

5. Final remarks

Using the Fulifiski-Kramarczyk markovian ME we solved the dynamics of the
Friedrichs model. The results are fully equivalent to the ones obtained via resolvent
formalism. We did it showing the existence of inverse superoperator N~ in Eq. (3), the
existence of which has not been proven yet for the general case. Therefore, it is useful
to know that it exists at least for some models. We believe that this fact can extend the
application’ of markovian ME in studying the problem of time evolution.

We would like to extend our appreciations and thanks to Professor A. Fulifski for
many helpful discussions and comments.
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