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The aim of the presented paper is to show that fluctuations of the lattice constant
play an essential role in theory of the equation of state for crystals near their crystailine
phase transition temperatures. The influence of fluctuations is considered in approximation
of homogeneous subsystems according to the cell model suggested by Smoluchowski. The
mean square fluctuation is derived by taking into account the Morse potential in pseudo-
harmonic approximation. It has been shown that taking into account fluctuations of the
lattice constant changes the relation among the variables P, ¥ and T near the critical point.

1. Introduction

It has been shown [1] that taking into consideration the particle density fluctuations
in the derivation of the equation of state for a fluid system leads to the corrected equation
of state and gives better agreement with experimental data than other theories. Even in
rough approximation the fluctuation correction to the van der Waals equation gives the
value of the critical ratio Z, < 0.33 which is more close to an average experimental value
for several gases Z, = 0.292 than other theoretical results. It has been shown that the
density fluctuations are responsible for the phenomenon of phase transition in a fluid
system and enables us to explain the mechanism of condensation.

The fluctuations are believed to be negligible from the macroscopic point of view.
Thus, the fluctuations are usually neglected in the derivation of thermodynamic relations
between physical quantities describing a system. On the other hand, it is a well known fact
that the fluctuations become abnormally large in the vicinity of the critical point and they
are responsible for critical phenomena such as critical opalescence or critical scattering
of neutrons. In particular, the crystal lattice symmetry of fluctuations plays an important
role in the investigations of critical scattering of X-rays observed in dielectric crystals or
in crystalline binary alloys [2, 3]. The lattice constant fluctuations in crystal correspond
to the density fluctuations in a liquid system. The aim of this paper is to answer the
question how the lattice constant fluctuations can influence the equation of state for
crystal and, in particular, how they change its behaviour in the phase transition region.

From the point of view of statistical physics the equation of state can be derived by

* Address: Instytut Fizyki PAN, Lotnikéw 32/46, 02-668 Warszawa, Poland.
(C)Y)

[N



92

means of the thermodynamic functions calculated on the basis of the Hamiltonian for
a given system. In the case of the equation of state for crystal it is necessary to take into
account the Hamiltonian including an anharmonic nature of interatomic. interactions.
Usually the anharmonicity of lattice vibrations is considered by means of the perturbation
theory in cubic or fourth order approximation. Recent investigations show, however,
that this approach cannot be applied to the description of crystal properties near the phase
transition point when the anharmonic effects are sufficiently large. Therefore, in order
to find the theory convenient for proper description of phase transition in crystaI we
apply the self-consistent method based on the equation of motion for the double time
thermodynamic. Green’s function [4] in its zeroth order approx1mat10n which is known
as the pseudoharmonic approach [5]. The main idea of the pseudoharmomc theory consists
in assumption of the self-consistent phonon field in which phonons can propagate as the
collective excitations appearing in a crystal. So, from the physical point of view, this
approximation is equivalent to the molecular field theory. In dther words we can say
that the physical model of a crystal applied for our con51derat10ns is analoglcal to the
model discussed in the case of van der Waals theory of a 11qu1d system or to the Weiss
approximation for a ferromagnet

Detailed calculations-are carried out for the Morse potential of crystal interactions [6]
applied to a crystal with simple cubic symmetry.

2. Fluctuation model of a crysial near the critical point

In order to formulate the fluctuation model of a system near’ the phase transition tem-

perature we apply the idea conceived by SmoluchoWsk1 [7] ini connection with his theory
of critical opalescence. The starting pomt consists in the observation that the’ system in
‘question becomes inhomogeneous since fluctuations of the lattice constant grow’ rapidly
in any region of crystal when the critical point is approached. The system can be conceived
as one composed of N cells in which the lattice constant differs from the mean one. The
nteractions between cells are taken into acco'unt”only by the interactions betwéen neigh-
bours of atoms lying at the boundary of a given cell. This assumption is equivalent to
the statement that the various cells are not correlated. Therefore, for each cell the rest
of a crystal can be {reated as a reservoir. The cells treated as the subsystems immersed in
reservoir form some topological configuration at a given moment of time, but their
dimensions and values of the local lattice constant undergo changes in time due to the
dynamical nature of the fluctuations. It is generally postulated that all thermodynamic
functions exist' for each cell. The subsystem remains in a non-equilibrium state with
respect to the reservoir, but we can assume a local equilibrium. In other words, all physical
quantltles of the subsystem are given by the correspondlng equilibrium functions in which
the equilibrium variables are replaced by the local instantaneous variables [8, 9]. Thus,
any additive quantity 4 of the system can be expressed by a sum over these quantities
of the subsystems

A=Y 4, ' (1)
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In order to calculate 4; an arbitrary phenomenological or microscopic model of a system
and the standard theory of fluctuations can be applied.

This physical model of the system near the critical point has been used to derive
the equation of state for a fluid system [1] and a magnetic system [10] as well as for calcu-
lating the specific heat of a ferromagnet above T . [11]. A similar model has been suggested
by Rolov [12].

3. Influence of the lattice constant fluctuations on interatomic interaction

In first approximation we assume that the local fluctuations of the lattice constant
are homogeneous. Neglecting a possible space distribution of the lattice constant within
fluctuation, we can express the local value of the lattice constant as follows:

I = K(1+46), )

where §8; denotes the lattice constant fluctuation in the i-th subsystem and [ is the all over
average and has the meaning of equilibrium value. So, /; denotes the instantaneous
value of 7 in the i-th subsystem averaged over the space of fluctuation. Since the length
of a crystal is assumed to be independent of the configuration of fluctuations we can
write condition for the average value of the lattice constant in the form:

Y. 8 =0. €))

Condition (3) does not exclude the possibility that the mean lattice constant 7 depends
on the mean square fluctuation determined as

2 __i 2
<6>—Nchsi. @

According to the pseudoharmonic approximation we assume that the interactions in the
homogeneous subsystem can be expressed in terms of the effective Morse potential as
follows [6]:

14

ol y) = D[e—lz(’l_; —l)ez”—2e_6 (ﬁ —l)e%] 5)

where D is the dissociation constant and r, denotes the equilibrium position in the case
of harmonic interactions. Thus, r, does not depend on temperature and remains a param-
eter of the theory. The parameters D and r, take the same values for all the subsystems.
It results from the fact that the static forces in crystal do not fluctuate while fluctuation
is created under the action of a random force. The variable y is related to the mean square
relative displacement of neighbouring atoms and can be expressed by means of the harmonic
‘phonon frequencies wj(4) calculated for the polarization branch 4 and the wave vector



94

belonging to this branch. On the basis of calculations carried out in the paper [6] we can
write:

1 o D)
_ S ) oth 2200,
Y = N2 Ao Z i) o rkaT ©

where T denotes the temperature of a system, kg is the Boltzmann constant, N — the
number of atoms and fo(ro) stands for the harmonic strength constant. The pseudoharmonic
strength constant f{I) can be written as

d*¢(D)

O

The procedure leading to formula (6) is based on the assumption that phonons are prop-
agated through the homogeneous system in which the inhomogeneities due to fluctu-
ations are averaged over the space of crystal. So, the influence of fluctuations on the
average phonon field is considered by means of the mean number of phonons calculated
for crystal with the lattice constant dependent on the mean square fluctuation given
by (4). In this way we can consider the influence of local fluctuations on the overall
properties of crystal in the molecular field approximation.

The lattice constant fluctuations create the lines of discontinuity of the lattice constant
at the boundaries of fluctuation cells. Since the fluctuations are of the dynamical character
these lines move inside a crystal. Under some circumstances this movement can be very
slow and such a case corresponds to a crystal with dislocations which are originated from
the lattice constant fluctuations.

4. Mean square fluctuation

In order to give a more detailed discussion of the problems mentioned in the previous
section one should write an explicit form of the mean square fluctuation of the lattice
constant. In this aim we apply the method developed by Smoluchowski [7] for calculating
the probability of occurrence of a fluctuation. The general formula for the mean square
fluctuation has the form:

S Bmax Smax
@ = | 6 oxp [~ LO)kaT1dd] | exp[—L()/ksT]do, ®)

Omin Fmin
where L(5) denotes the work necessary to create the fluctuation described by the parameter
5. The limits 8., and O, in Eg. (8) are connected with the physically possible values
of 6. Condition (3) requires Omy = — Omin = Om if only the probability distribution
is an even function of 8. In the case of temperature and volume as the independent variables,
the work L can be expressed by the change of the Helmholz free energy. Let us assume
that the subsystem is being compressed from its equilibrium volume v to a volume vy
while the reservoir is being expanded from ¥ to V;. Since the volume of the reservoir
is much larger than the volume of the subsystem, we can also assume that the pressure
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in the reservoir remains constant and equal to the equilibrium value P(¥) during the
whole process when the fluctuation is being created. Thus, the work L can be expressed
as follows:

L(6) = — T[P(v)-—P(V)]dv, ©)]

with the temperature of the subsystem kept constant since the fluctuations in temperature
and the lattice constant can be regarded as statistically independent. According to our
general assumptions the local pressure is determined by the equation of state for a homo-
geneous system being in the equilibrium state. In order to find P(v) we apply the equation
of state for crystal obtained by Siklés [6]:

12D

rol?

P(V) = — x(l) [ —x(D)e*], (10)

where x(I) = exp [—6(/[ro—1)] and ¥V = NI3. Tekirg into account relation (2) we have
v = NolP(146)°, €8y

when N, denotes the number of atcms in the subsystem. It results from our physical
model that the mean number of fluctuations N +is equal to the ratio of all atoms to the
mean number of atoms N, in the fluctuation. The number N, can be determined theoreti-
cally [13].

In the spirit of the molecular field approximation the variable y given by equation (6)
does not depend directly on 8. So, using relations (2) and (10) we have

—6-15 -
12 _ e _ -e6ls
P(v) = — ;ﬁzx(l) L [ —x(D)e Toee®]. (12)

Substituting equation (12) into (9) and next carrying out the integration over & instead of v,
where dv = 3N,I3(1+6)?ds, we obtain

- S5
NIl o [1-e
L(3) = 36D =% Jx(D & | - el —L(+6°—1)
0] 6—
To
—IZIJ
na|l—=e " 3
—x(D)e” —7——%((1+'5) =15 13)
122
¥o

In the approximation to the linedr terms with respect to 62 we obtain

L) = 36D - Nox(h [x(?)ezy <1 +6 i) o2 (1+3 i)] 5. (14)
0

Ty Iy
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Thus, the probability distribution function for occurrence of ﬁuctuat1on descrlbed by the
parameter -8 takes the form of the Gaussian type

p(6)ds = exp [ — Nood?[kgT1d0, (15)

@ = 36D L x(D) [x(?)e” (1 +6 -l-) — M2 (1 +3 i)] . (16)
ro o 'To

Using equations (8) and (14) we obtain the following expression for the mean square

fluctuation:
26, exp| — —= 87
ks T p( kaT ”')

< 2> = 1_ ——= —_— <l lIE] 17
W | \/N ( \/Nooc5> 1n
keT * \N kgT "

where @ is the probability integral. The quantities N, and &, are treated in this paper as
parameters of the theory.

On the other hand, it is known from the theory of fluctuations [9] that the probability
index is related to the isothermal compressibility and vanishes at 7,. Looking for the
asymptotic behaviour of {6?) we obtain from (17) for « — 0 as follows:

(8% rar, = 3 Ome (18)

For temperatures away from T, the probability distribution function is sharp and rapidly
convergent. Then the limits £ 00 in equation (8) can be assumed and we obtain the well
known result:

where

&? ks T
D=3 Nor (19)
The mean square fluctuation given by (19) is divergent for T — T, but the assumption
at which result (19) has been obtained is not valid near the critical point. When the critical
temperature is approached the probability distribution function becomes more and more
flat because of the decrease of probability index.

5. Equation of state for inhomogeneous crystal system

Using general relation between the external pressure and the interaction potential [6]
we can write the following formula for the average pressure in the total system composed
of N; homogeneous fluctuations of the lattice constant

__ /oo »)
7 (T ) 2
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According to (5) the pseudoharmonic potential ¢; is the nonlinear function of I; being
the function of 8. Thus, the statistical average {@i(l;, )> is certainly a function of {(6%).
Substituting (5) into (20) we obtain in approximation to the linear terms with respect
to (8% as follows:

12D - .
P=— 7z [e% —x(De*]x(T)
o

+ 723 x(1) [e”’z (1 - i) —2x(D)e” (1—2 i)] (8%, ¢4}
rol o To

The second term of Eq. (21) expresses the correction to the equation of state for crystal
given by the lattice constant fluctuations. The mean lattice constant 1 as a function of
{52> is determined by means of equation (21).

The local, isothermal change of pressure due to the lattice constant fluctuation with
the parameter & is equal to the difference

AP = P(v,)—P(V), (22)

where P(v,) and P(V) are determined by equations (12) and (10) correspondingly. Consider-
ing equation (22) one can find &, as the value of 6 for which the local change of pressure AP
due to the lattice constant fluctuation is equal to zero. This change would be negative
for 6 > 8,, which would mean negative local compressibility. Such a situation corresponds
to the local phase transition. Even far away from the critical temperature there is a finite
probability that the fluctuation corresponding to a new phase can be created in a small
element of volume for a very short period of time, since the probability distribution
function (15) is determined for all values of  even away from the critical region. The
whole system, however, becomes unstable mechanically when the mean square fluctuation
is equal to the square of the critical fluctuation .. Thus, we suggest the criterion of stability
in the general form {1]

(%) = 82 (23)

The stability criterion (23) is connected with local mechanical instability but it does not
mean that the overall isothermal compressibility must be negative. Clearly, the local and
overall compressibilities are different [14]. The local isothermal compressibility can be
found from equation (12) while the overall compressibility should be calculated from the
equation of state (21) which is averaged over the all fluctuations.

6. Conclusions

Our aim has been to show that the inhomogeneities due to fluctuations of the lattice
constant should be taken into consideration in the derivation of the equation of state
for crystal. The lattice constant fluctuations give corrections to the equation of state
particularly in the vicinity of the phase transition. It is known that the experimental data
.deviate from the function fitted to results of rigorous theories in the immediate vicinity
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of the critical point (e.g. [15]), that means for reduced temperature sufficiently small, less
than 10~ in order. It is usually assumed that these deviations are caused by sample
inhomogeneities like impurities or crystal defects. Near the critical point the fluctuations
create inhomogeneities in any physical system undergoing a phase transition. Since the
dimensions of fluctuations grow rapidly when T approaches T, in the immediate vicinity
of the critical point the fluctuations are a main source of inhomogeneities. Due to the
dynamical nature of fluctuations we observe rather “diffuse” phase transition instead
of “sharp” phase transition. This fact enables us to explain some diversity of meaning or
renormalization of the critical point exponents in the immediate vicinity of the critical
temperature.

The aim of the paper is to give a physical picture of how the lattice constant fluctuations
influence the overall properties of crystal, and not to present the exact theory of lattice
vibrations. Therefore, we limited our considerations of the fluctuation model of crystal
to the case of simple cubic lattice and interatomic interactions in the form of the Morse
potential. Some numerical estimations obtained on the basis of our physical model of
a crystal in the case of pressure equal to zero give reasonable results [16]. Because the
mean square fluctuation strongly depends on temperature near the critical point, one can
expect that the critical properties deduced from equations (21) and (23) will be altered in
comparison with the case when fluctuations are neglected. The detailed numerical analysis
would be valuable in the case of real crystal lattice and more realistic form of the inter-
action potential. Qur results have only illustrative character but we hope that they can
be treated as the starting point to further development of the theory of phase transitions
in crystals.
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