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An analysis was made of noncoherent two-photon amplification of a laser pulse
having a plane, cylindrical and spherical wave-front, in a medium with a monotonic distri-
bution of population inversion. Approximative analytical and numerical solutions to the
propagation equation are given. It is shown that the basic effect which accompanies pulse
amplification is its time compression. A detailed analysis of this effect is given. Also the
effect of a multi-photon radiation-absorption upon the pulse-duration variation in the
amplifier is discussed.

1. Introduction

The possibility of generating and amplifying a coherent light with the aid of two-
-photon transitions was indicated in the investigations of Sorokin and Breslau [1] and
Prokhorov and Selivanenko [2]. The idea formulated in [1, 2] inspired a number of investiga-
tions (see €. g. [3]) wherein the properties and fabrication conditions of a two-photon
generator were analyzed. In [4-7] the possibility was studied of producing powerful,
ultra-short pulses in a two-photon amplifier by making use of simple two-photon transi-
tions.

The process of two-photon amplification, unlike the single-photon one, is non-linear
for both the strong and weak signal. In the case of a weak signal we have to deal with
a non-linearity due to the multi-photon interaction between the radiation and the medium.
The non-linearity of the interaction between a strong signal and the medium is addi-
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tionally conditioned by the saturation effect. It is to be expected that the above effects
will lead to the occurrence of a number of interesting phenomena, which on the one hand
may provide valuable information on the structure and the mechanisms of the interaction
between the laser radiation and the medium, and on the other hand may extend the range
of application of this radiation. The literature on laser pulse propagation in a two-photon
amplifier is still scarce and no comprehensive analysis of the problem is available.

The present paper deals with the evolution of a laser pulse with a plane, cylindrical
and spherical wave front in a two-photon amplifier with a monotonic inversion distribu-
tion. The description is based on equations of energy balance, which are valid in the region
of non-coherent interaction.

2. Model of the medium and equations of propagation

Let us consider the propagation of a laser radiation pulse in an isotropic medium with
population inversion of two-levels, the energy difference of which is E,—E, = 2hw,
at the centre of the transition line, where w, is the central frequency of the radiation
spectrum.

Let us assume that the refractive index of the medium is constant, the transition-
-line broadening is homogeneous and the interaction between the pulse and the medium
is of a non-coherent nature.

Let us assume, moreover, that in addition to the processes of emission and absorption,
there occur, in the medium, linear dissipative processes and as the variation of the wave
radiation front is conditioned by these processes, it can be neglected.

. The approximate equations of pulse propagation with a plane, cylindrical or spherical
wave front, which result from the principle of conservation of energy, have the form [8]

la4—1(’)"K(t)-1(t) 0

- ek i s T s .

oot o 3 4

6N(t? ) + N(t, r)—N°(r)
ot T,

where K(t,7) = 26 N(t, r)I(t,r)—p is a function of the amplification of the medium,
I — radiation intensity!, N — population inversion (N°®— inversion in the state of
thermodynamic equilibrium), T, — time of inversion relaxation, ¢ — cross-section for
two-photon forced transitions at unit intensity, o-— linear-loss factor, v — velocity of
light in the medium, s — parameter dependent on laser action diagram (in two-level
diagram s = 2), a = 0, 1, 2 for a plane-, cylindrical- and spherical wave,.respectively.

In the case which is the most interesting from the practical standpoint 7, < T,
(t, — half width of pulse) the set (1) may be reduced to the equation

ol(z, r)

s BHI*(z, ) exp [ —so jf I*(¢, ryde'] - (Q-I— %) I(z, v), 2

+soN(t, NI, r) = 0, (D

1 By radiation intensity is meant here photon flux density (in units: photon/cm? s).
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where B(r) = 20N°(r), T = t— - . Making use of the equation (2) the evolution of a pulse
v

in a two-photon amplifier may be investigated. The case of a weak signal® is the first to-
be considered.

3. Evolution of weak-signal intensity in an amplifier

For a weak signal
| P(@)dr < (so)™!

and the equation (2) takes the form
oI(z, r)

or

BO(x, F)— ( o+ {1) Iz, ). @)

As is evident from (2') the radiation amplification may occur only for intensities higher
than the threshold intensity

Iy =~ (3)

The solution to the equation (2') has the form

. \a ’ ; a -1
16, = 10 (2 exp [=etr=ro0 f1-1%0) [ (22 ] p0 exp Lot -roter} .
i 4y

where r, is the radius of curvature of the wave radiation front at the input of the medium,
and I%7z) = I(z, r = ro).

Making use of (4) the evolution of the intensity of a plane wave as well as convergent
and divergent wave will be investigated.

3.1. Plane wave

In the case of a pulse, with a plane wave front, which propagates in a homogeneous
medium, the solution (4) becomes [4]

12, 1) = 1°(2) exp (— o) {1— §1°<r> [1—exp (—el)]}_ , ©

where [ = r—r,.
Attention should be drawn to some differences between two- and single-photon
amplification of the weak signal, which result from (5).

2 By weak signal is meant here a laser pulse which produces no essential changes in population:
inversion, that is for which N(I)~ N°©.
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. Firstly, there is a critical path of amplification

]
I, = l In —'lil—— ,
e Blh—e ,
at which the intensity becomes infinite. The existence of a critical path results from the
fact that the saturation effect is left out of account. After the pulse has travelled a path
approximating to /, the amplification enters the saturation stage, which leads to the finite
intensity for /> I.

Secondly, if I%(t) = I, then I(z, r) = I°(z). In particular, if the peak intensity of
the input pulse I is equal to the threshold intensity, it remains constant in the course
of propagation, whereas the fore- and the rear front of the pulse is absorbed by the medium.
As a result, the greater the time compression is the higher the linear-loss factor will be.

3.2. Divergent wave

The evolution of intensity in the medium of a divergent radiation beam is conditioned
by two opposing processes: the intensity increase due to the burning-out of the energy
stored in the medium and the intensity decrease as a consequence of divergence. As will
be shown further on, in a medium with a non-homogeneous inversion distribution in the
direction of the propagation, these processes may result in the occurrence of a variety of
amplification regimes. It should be emphasized that in the case of large divergences,
a small increase in intensity (or even a decrease therein) may be accompanied by
a large increase in the total radiation power, in view of the increase in the effective
cross-section of the beam. The divergent wave, unlike the plane one, can propagate in
the medium with ' ho ‘change in the peak intensity, at an arbitrary input intensity, if
only the amplification factor for a unit intensity f varies in accordance with the
expression (see equation (2)

r
B(r) = k= +e,
r

where k = Wik e = ~I%~. When analyzing the effect of the inversion distribution upon
Folp h

the pulse evolution, it will be assumed that the dependence of the coefficient § upon r
has the form,

p(r) =a <r7°)c, o, ¢ = const. ©)]

Distributions of this type may be effected approximately by using a suitable configuration
of the active material or pumping system. On the other hand, an analysis carried out for
such a case may provide qualitative information on the pulse evolution in the media
with a different, monotonic inversion distribution.

For the sake of clarity the analysis of intensity variations in the medium will be
carried out in the approximation to low linear losses. Making use of (4) it can be demon-
trated that for intensities higher than the threshold intensity, this. assumption does not.
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influence the qualitative results obtained below, and for. /> I has only a slight ‘in-
fluence upon the quantitative results.
With the condition (6) and g/ < 1 the solution (4) can be written in the form

w(o)x*
I(x,7) =1 ( )x_;u(r) 1’ )
where
o atc—1
L atc—1, u(r) = yrg

’ 1
The dependence of the amplification of the divergent radiation wave A4 = T upon the

path travelled in the medium, for v > 0 is shown in Fig. 1. It is characteristic, in this
picture, that for certain values of the parameters a, v, u the variation of the radiation in-
tensity is non-monotonic. In addition the critical path of the amplification

1
F-1]
occurs only at u < 1. It will be seen also that at fixed values of v, i the character of the
radiation-intensity variation depends upon the type of divergence. By way of example:

Lo = ro[(1—p)~

v
at p <1 and 1< — < 2 the intensity of the wave with cylindrical divergence (a=1)
u

increases monotonically, whereas the intensity of the wave with spherical divergence (¢ = 2)
varies in the medium non-monotonically in the interval (0, ).
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Fig. 1. Dependence of intensity of a weak signal upon the path travelled in a two-photon amplifier at
v>0.1—v>pa; 2—v=pa; 3—v< pa

If v < 0, which for a > 1 means that the inversion increases in the direction of propa-
gation (¢ < 0) then, at the arbitrary values of the parameters occurring 1n (7), there exists
a critical path of amplification

1 .
Iy = rol (1 +{uDPM—1].

At the same time, for — > a, the radiation intensity increases monotonically, while in
l,{ 2%fjo ago
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the opposite case the amplification has its minimum at the point
- 1
= L a+v| ]W,
a(l+{ul)
Fig. 2 depicts the evolution of the Gaussian pulse with a spherical wave front in

a homogeneous (¢ = 0) two-photon amplifier. The graphs were plotted on the strength
of the solution (4) at

-1
ro=5cm, o =000lcm ™!, p, =09, (u,, = cf+c_>
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Fig. 2. Evolution of a weak signal with the spherical wave front in a homogeneous two-photon amplifier

As is evident from the diagram, the relatively small variations in the peak intensity of
a divergent-radiation pulse are accompanied by its strong time compression. This effect
will be discussed further on in’ detail.

3.3. Convergent wave

In the case of convergent radiation propagating in the amplifier, the intensity increase
is conditioned, on one hand, by burning-out of the energy of the medium, and on the
other, by the cohvergence of radiation. Although from the viewpoint of obtaining a large
total pulse power, this case is of less interest than the case of a divergent wave, since the
intensity increase is accompanied by a decrease in the cross-section of the beam, the appli-
cation of a convergent wave may be advisable in the first phase of amplification, ina medium
of a high threshold intensity. ' i



883

If the threshold intensity is lower than the intensity causing the breakdown of the
medium, then with the aid of a convergent wave, it is relatively simple to obtain the
amplification threshold. After the pulse has obtained the threshold intensity, the convergent
wave can be transformed into a divergent one by means of the optical system, and the
second amplification wave can be generated, the intensity increase of which may be accom-
panied by a large increase in the total power. In order to effect this type of a two stage
amplification, long-focus convergent lenses may be utilized.

The intensity variation of a convergent wave, in approximation to low linear losses,
can be described by the expression (7), if r is replaced by —r, and the assumption is made
that r varies from r, to 0. It is easy to demonstrate that in the case of v > 0, for the arbitrary
numerical values of v, u, a there is a critical path of amplification

1

he = Irol [1=(1+1pD ~1,

whereas at v < 0, the critical path of amplification occurs only when |u| < 1, and is
.
I = [rol [1—(1—|ﬂ|)|”‘]-

However, unlike the divergent wave, the intensity of the convergent wave, at r — 0,
increases infinitely (within the framework of the model assumed) also in the case where
the critical amplification-path does not occur.

A detailed analysis of the intensity variation of convergent radiation can be carried
out, on the strength of the modified formula (7), in the same way as for a divergent wave.

’

4. Weak-signal compression in an amplifier

An analysis of the pulse-duration variation in a two-photon amplifier will be carried
out by using the function of the time compression introduced into [8] and defined by the
relation

= g ey ®)

In accordance with [8], the relation between the function of the time compression T" and
the function of the amplification of the medium K, in the case where K does not depend
explicitly upon time, has the form

= 51(7‘)‘;52("_) [K(r, I)—K(r, £ I)], 2

where I, is the pulse peak-intensity, and §,, §, are the slope coefficients of the fore and
rear pulse-front, defined by the relations
ol(r,r)| 1 L) ol(r, 1) 1 I(r)
o | 6(r) T ot

04,0, >0,

w00 M’
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(11, T, — points at fore and rear front, respectively, at half-height). In the case where the
function K(I) is monotonic, the coefficients §,(r), 5.(r) are, in -general, slow-variable
functions in comparison with I,(r) and () for typical pulses (Gauss-, Lorentz-, expo-
nential etc.) with values approximating to unity.

Making use of (9) and keeping in mind that for a weak signal

K = Bz, )~ o (10)
we obtain
0.+0,
T : B(OL(). (11)

As is evident from (11), the rate of time compression of the weak signal increases propor-
tionally to its peak intensity.

The general dependence of the pulse compression C, = t5/z, upon its peak intensity,
valid in a homogeneous medium, at small rediation divergences, has the form [8]

In .
~ T(1L,)
C, = exp [f TR, dlh] , : ,_ (12)

where 5 = t,(ro), I; = I;(ro). From (10), (11) and (12) we have

3/2

I,—1
p L ’ (13)

0
I,,— th'.

=

where & is the mean value of the function 2[6,(r)+J,(r)]in the variation interval under
consideration r. It will be seen that the nearer I} is to the threshold intensity, the greater
is the shortening of the pulse per unit increase in the peak intensity, the pulse compression
occurring for both I? > I and I < I,,. In the latter case appreciable compressions
can be obtained only when 7, is near enough I,,, since the limit compression (at / — c0) is
I, "

Ith"ll?

C::lm L

At I > I, the pulse compression for / = /, becomes infinite. Making'kuse of (13) and (5)
we obtain

o0 ~3/2
C, = [1- I—" (1—e‘0’):| . (14)

th

For & = 1, an analogous expression was obtained in [4] in a different way. If L =1,
then in accordance with (14) the pulse shortens, in the medium, approximately exponen-
tially

C. = exp (3 del).
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Next, the effect will be considered of the pulse time-compression in the case of
a divergent and convergent radiation propagating in a mediom with the inversion distri-
bution of the type (6). Utilizing (11), (6)—(8) we obtain

v—1
o VX
o e =0, 15
R LR NC) Fr i (s)
at+c—1 ) g ’ .
where u;, = —— The solution of equation (15) can be written in the form
o hro

) X+ py—1 3/2

T,(x) = Tg ShE.. (16)
Hp

Fig. 3 shows the dependence of the pulse compression C,, defined by formula (16),
upon the amplification path, for a divergent wave, at v > 0. As is seen from the graphs,

Czh iy CT‘“

Ba>1
s IS

C-rj

- B -

0 Le | 0O [ 0 {

Fig. 3. Dependence of time compression of a weak signal upon the path travéll‘éd in a two-photon arhpliﬁer
at » > 0 — divergent wave

at u, > 1 obtaining high pulse compressions requires a stabilization of the peak power
of the input pulse, since olny for p, close to one the limit compression

clim =( Hu )5/2
i ta—1

assumes high values. The duration of a pulse with stabilized peak power may be varied by
varying the amplification path. This will be clearly seen if we put g, = 1 in (16). Then

1 v3/2
C. = (1+ —)
o/

and by varying / the wanted compressions may be: obtained.

If the input pulse has no stabilized peak power (or the stabilization is inadequate)
then, in order to obtain a high compression, it is more convenient to implement the case
py < 1.

If, at a divergent wave, v < 0, then, for arbitrary u,, there: occurs a critical amphﬁ-
cation-path /, and, at / - /[, C, - . g
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The case of a convergent wave, for v < 0, is represented in Fig. 4. The analogy can
be seen for the case v > 0, at a divergent wave. Time compression variation of a con-
vergent wave, at v > 0, occurs in turn in an analogous way as the compression varia-
tion of the divergent wave at v < 0.

Although the dependence of the pulse time-compression upon the amplification
path is to a large extent analogous, for both the convergent and divergent wave, in practice,
in order to obtain high compression, it makes some difference which type of wave will
be used. As a large increase in the peak intensity may lead to the occurrence of non-linear
effects broadening the pulse or to the breakdown of the medium, in practice it is advisable
for a high pulse-compression to cccur for a small increase of the peak intensity.

Crl ; CTI CT{ |l
5 N |
pp<t { ,U_;_,_I/z Ky =1 l
k7 I
I | i
! i |
1 | 7 | ! I
! . I
0 lh |r0| { 0 'rol { 0 Irol {

Fig. 4. Dependence of time compression of a weak signal upon the path travelledin a two-photon amplifier
at » < 0 — convergent wave

Utilizing (7) and (16) it is possible to obtain a relation between the peak-intensity
amplification 4, = I,/I} and the pulse time-compression

3/2
C= (—%) . {an

It will be seen therefrom that, at equal amplification values 4;, the time compression for
a divergent wave (x < 1) may be appreciably higher than for a convergent (x > 1) or plane
(a = 0) wave. Moreover, from formula (17) it follows that the highest compressions may
be obtained for pulses of divergent radiation with the spherical wave front.

The foregoing considerations concern the pulse with monotonic fronts. In case where
the pulse is of a markedly irregular structure, as, for example, the pulse of a generator
with self mode-locking, the pulse compression may occur still more effectively than in
the case of a pulse with monotonic fronts. It is possible, in this case, to discern between
to mechanisms leading to the formation of an ultra-short pulse, that is: cut-out of the
most intensive sub-pulse out of the input pulse as a result of a marked intensity discrimi-
nation; shortening of the singled-out sub-pulse in the process of a non-linear amplification.

It is noteworthy that pulse compression occurs likewise in the region of coherent
interaction [6], which, in the media of small dispersion and phase modulation, offers
a distinct possibility of forming, in a two-photon amplifier, a single pulse of duration
< 10713,
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5. Evolution of a strong signal in an amplifier

A detailed analysis of non-linear amplification of a strong signal in a two-photon
amplifier will be carried out in a separate paper, and that is why attention will be payed
here to certain aspects of the problem only. Exact, quantitative information on the evolution
of the pulse in the saturation region can be obtained by using the numerical solutions

of equation (2). Essential, qualitative information on the amplification process can be
acquired by the analysis of the function of amplification of the medium. Our considerations
will be confined to the case of radiation with small divergence that is, where K> ajr.

The function of amplification of the medium, at 7, < Ty, may be written in the
form

K = Bf(0)I, exp [—sox(0I;]1—o, (18)

where y(t) = [ f2()d?, f(r) — function determining the shape of the pulse, and sat-

isfying the condition: f(r,) = 1 while 7, is the value t corresponding to the position of
the pulse maximum.

Tt will be seen from (18) that the pulse intensity increase is possible if its peak intensity
at the input of the medium satisfies the condition

I} > Iy exp (soxoli™), 19

where: o = | f2(x')dr’ and 1y, fo(r) concern the pulse entering the medium. It the con-
dition (19) is satisfied, then, as / — oo the pulse peak-intensity approaches infinity (within
the framework of the assumed model). As the energy of the asymptotic pulse should be

AK

Ta T N T

.:__/___.__._.__.__ = _‘_E__x.____

Fig. 5. Dependence of amplification function of a strong signal in a two-photon medium upon local time

finite (not greater than the energy accumulated in the medium and linked with the existence
-of population inversion) the pulse duration will approach zero.

One of the major differences in the amplification process of a weak and a strong
signal is the asymmetry of the amplification of the fore and the rear front of the latter,
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due to the saturation-effect. This will be seen from Fig. 5, which depicts the qualitative
dependence of the amplification function upon the local time t for the symmetric. pulse
with monotonic fronts. The stronger amplification of the fore front of the pulse than that
of its rear front leads to a shifting of the pulse maximum along the fore front. From the
viewpoint of an observer positioned inside a motionless system, the pulse maximum
shifts at a velocity higher than the group velocity of light v in the medium. However,
in'contrast to the case of a single-photon amplification the shifting of the pulse maximum
along the fore front cannot be unlimited. This is linked with the existence of the point 7,
(see Fig. 5) at the fore front, below which the amplification function assumes negative

GTJ/JO

51 A=Hcry

-2 =) 0 7 2 T40
Fig. 6. Evolution of a strong signal with plane wave front in a homogeneous two-photon amplifier.

o= 10"*cm', s = 2, 7p = 1015, I} = 5% 10°8 cm?st, = 10-2° cms, ¢ = 0.06 cm~?

values (that is there occurs an absorption). This point forms as if it were a barrier which
makes it impossible for the maximum to shift beyond the value 7,. It can be demonstrated
that 7, is limited from below by the value 7,, (that is 7, > 7,) given by the equality

Io(t) = I,

For a Gaussian input pulse with the maximum at the point ¢ = 0, the half-width rf,’ and
the peak intensity I we have, for instance:

1’? 1/2
In (—)
0 Ith
= 3

In2

— 1
_7‘[

It is the existence of the point 7, which limits the shifting of the pulse maximum along
the fore front, that, independently of the shape of the pulse entering the medium, makes
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the compression of this pulse possible®. As is well-known {9], at a single-photon amplifi-
cation, only the pulses with a sharp enough fore front undergo compression.

From the above qualitative considerations it will be seen that in a two-photon am-
plifier not only the weak pulses undergo compression but also the strong pulses, causing
the saturation of amplification. A quantitative corroboration of this conclusion is shown

0

the saturation region. The graphs were plotted on the strength of numerical solutions to
equation (2). An analogous numerical analysis performed for a Lorentz pulse (that is
a pulse which undérgoes broadening in a single-photon amplifier) shown that such a pulse
undergoes compression in a two-photon amplifier.

Throughout the region of I-variation, as assumed in calculations (from 0 to 100 cm),
the peak intensity of the two types of pulses increases monotonically, while their half-
-witdh decreases monotonically.

T 2
in Fig. 6 which illustrates the evolution of a Gaussian pulse ( f(x) = exp 'I:— (——) :D in
T

6. Effect of multi-photon absorption upon pulse-duration variation

A two-photon amplification of a laser pulse occurs at relatively high radiation inten-
sities, and this may result in the occurrence of non-linear losses which reduce the rate
of pulse compression. One of the main factors which cause the reduction of the compression
rate is the multi-photon radiation-absorption. We shall analyze the latter effect upon the
duration variation of a weak signal.

The amplification function of the medium, which takes into account the multi-photon
losses, has the form [8] )

K=pl-BI" '—p, n>1,

where B, is the multi-photon-absorption coefficient at unit intensity. For the function
of time compression we obtain, in this case, the expression

_8,+6,
=Fy

T

[3 B—(1~2"""B,15 ). 20)

It will be seen from (20) that the multi-photon losses lead to a decrease in the pulse-
-compression rate.
For n = 2, from (20) we have

31 +3,

T =
4

(ﬁ . ﬁz)lh,

which yields 7 > 0 at p > B,. Consequently, a sufficient condition for the pulse com-

3 In the case where I3> Iy, and the pulse maximum lies in the region of intense saturation, the
pulse with a gentle fore front may, in the initial phase undergo broadening. However, when the maximum
is near enough the value 7y, the pulse compression follows.
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pression to take place, at the occurrence of two-photon absorption, is to have the two-
-photon amplification factor B higher than the two-photon absorption coefficient Ba,
what, in turn, is necessary for the amplification to be possible at all.

For n > 2, the condition for pulse compression (T > 0) is

1 ﬁ 1/(n—2)
welmsg) 2

At peak pulse-intensities higher than those defined by the right-hand side of the inequality
(21) there occurs pulse broadening: T < 0. In practice such a situation is possible only
at very high intensities.

7. Summary

The preceeding analysis indicates a number of features of non-coherent two-photon
amplification which differ basically from those of single-photon amplification. The most
important of them are:

— two-photon amplification may occur only for intensities higher than the threshold one;
— propagation of a pulse in a two-photon ampliﬁef is accompanied by its time com-
pression in the case of both weak and strong signals; '

— compression rate of a weak signal is proportional to its peak intensity;

—- pulse compression is possible independently of its shape at the input medium;

— in practice the highest compressions can be obtained in the case of the divergent
radiation ‘with the spherical wave front;

— under optimum conditions a compression of ~ 102 can be obtained in two-photon
amplifier. In the case of a picosecond input pulse, in a medium of a broad amplification
line and small dispersion, this offers the possibility of obtaining single, powerful pulses
of a duration of < 10-*3s. A hypothetical mechanism of forming an ultra-short pulse
consists in separating out of an input pulse the most intense sub-pulse, and in its com-
pression in the process of a non-linear amplification;

— one of the factors reducing the compression rate in a two-photon amplifier may be
the multi-photon radiation absorption.
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