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Condensation in one-dimensional system of hard rods is discussed. Each of N particles
interacts with Ny, < N neighbours by a linear attractive potential of the strength B. The
thermodynamical limit N — co is performed simultaneously with the Van der Waals limit
such that B — 0 with BN? = finite, and Ny — 00 with & = Ny/N = finite. When the fraction
& of particles being within the interaction range of a given particle is considered as a varia-
tional parameter minimizing the Gibbs free energy, the phase transition of first order appears.
The phase transition persists up to 7— oo (i. e., has no critical temperature), resembling
in this respect the fluid-solid phase transition. This is in contrast with the conventional
Kac-Uhlenbeck-Hemmer theory, in which the thermodynamic limit precedes the Van der
Waals one, and which predicts the first order phase transition of the gas-liquid type with
the finite critical temperature.

1. Introduction

One-dimensional systems of particles with finite-range interactions have no phase
transitions [1]. Kac, Uhlenbeck, and Hemmer (KUH) showed [2] that the situation is
different when the potential has an infinite range. They considered a one-dimensional
system of N hard rods, confined in a length L, and interacting with each other through
a potential with long-range attractive part of the form

Vaelr) = —aye™. M

The problem of the calculation of partition function was set in the form of an integral
equation and it was showed that the free energy and the equation of state of the considered
system are connected with the greatest eigenvalue of this equation. The eigenvalues are
functions of the temperature 7" and pressure p of the system, and the greatest one is to be
determined variationally (cf. especially Baxter’s version [3] of the KUH theory, and the
paper by Isihara and Wadati [4]). Now, if first the thermodynamic (N — o0, L — o0,
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N/L = finite) limit is taken for finite interaction range (y # 0), and after this limit the
Van der Waals limit y — 0 (i. e., interaction range — o0) is pérformed, one may show
the existence of a phase transition of first order with finite critical temperature, resembling
thus the gas-liquid phase transition. KUH conclude that, for the phase transition to
appear, it is necessary to take the limits in the required order (the KUH condition).
Indeed, if the required succession is reversed, or if both limits are taken simultaneously,.
all contributions from V,, vanish identically and thus there is no phase transition!.

The KUH theory, its consequences, generalizations, and specializations, have been
widely discussed (cf., e. g., [3-12]). In general; there is an agreement concerning the
necessity of the KUH condition for the appearance of the phase transition. In this paper
we want to present a counterexample: we are going to show that the system of hard rods
with linear (“gravitational”) interactions of limited range, discussed by Isihara and Wadati
[4] from the point of view of the KUH theory, exhibits a first-order phase transition also
when the thermodynamic and Van der Waals limits are taken simultaneously with yL = finite.
This phase transition, however, persists up to T = o, i. €., does not possess the critical
temperature. On the other hand, it vanishes at the ground state, T = 0. In this case the
phase transition is thus rather of the fluid-solid, than gas-liquid, type. We infer thus that
the phase transition is introduced into the theory rather through the variational procedure
than by the definite sequence of the limiting procedures, although the latter influences the
character of the resulting transition.

2. N-particle partition function

Consider the same system as Isihara and Wadati (IW) [4], that is, a one-dimensional
system of N hard rods of length o, confined in a box of length L, and interacting with each
other through a linear potential of the form:

o0 r<o
Sy ’ 2

i {—A+Br, r> 0. @
Assume, after IW, that the interaction (2) has — for a finite system — a finite range,
expressed by means of the number N, < N of other particles interacting through the
potential (2) with a given particle. The total potential energy is thus:

N—1{ M;
¢(VN) = Z V(rij)’ M; = min (N9 No+ i), (3)
i=1 j=i+1
1. €.,
(™) = o(r")—L ANG2N—No—1)+B Y vyr,, @
j=1
v; = (j=N+Ng)0(j—~N+No)—(No+1—=j)0(No+1-j), (4a)

1 The KUH condition can be weakened [5]: both limits can be performed simultaneously, if the length
of the interaction range is kept negligible comparing with the length of the system, i. e., if yL — 0 for
L—oo,y—0.
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where 6(x) is the step-function, and @4(r") represents the repulsive part of the potential.
Note that, in contrary to the IW formulation, the above notation does not exclude No>= 1N
The N-particle pressure partition function is (the hard interactions with walls at » = 0
and r = L are included):

w0 L
Zy(p, T) = 2™ "a | dLe™*"0(L— No) [ drVe P#C™), )
N °

with o = Bp, B = 1/kT, A = (h*2nmkT)'/?, and other symbols have their usual meaning.
Taking into account Egs. (2) and (4) we get, with the help of the substitution r j—Jjo = x;,

XN

Zy(p, T) = A™Yae ™7™ [ dxe™ [ dxy [ dxy_, ... | dx,exp(—pB
(4] 4] 1] 0

N .
ijj), ©)
Jji=1
where

N
K =3 ANG(2N—-Ny+1)—B > jvio
=1

= 3 ANo(2N—No+1)— % Bo(No+1) 3N —=2N, — 1)N,. (6a)
The multiple integral in Eq. (6) may be evaluated directly:

Zy(p, T) = (Ae”) Ne Py | dxe™ [ dxye’™&—x)
1] 0

:jv de_leYN—l(xN——xN_l) Z{ dxlem(m_xl) - (leaa)-Neﬁn fr[l (OC—’))J-)_I, Q)
j=
with
y; = BB ii vi = 3 BB{(j— N+ N,) (J=N+No+1)0(j—N+Ny)
~No(No+1)0(j—No)—j(2No —j+ 1)O(N,—j)}. (7a)

3. Thermodynamical limit

Consider now the thermodynamical limit, and assume that the range parameter N,
goes to infinity together with the total number of particles:

N - o, L - w0, N/L = finite, (8a)
NO - 00, No/N = é = ﬁnite. (Sb)
In order to guarantee the existence of the system we must also have:

A -0, B-0, AN = a = finite, BN? = b = finite. (8¢)
In this case,
K = Ni(a, b, &), y; =y, & jIN).
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Also,

fim Zf(J/N) j dz/(2).

The Gibbs free energy per particle is thus:

1
g(p, T; &) = — lim T kT In Zy(p, T'; No)
N=w

= po+kT In (Ajo)— al(1—&/2)+% bod*(1-2¢/3) + g5, )
with
N
g,/kT = lim —1— Z In [ao—y(j/N)o]
N—»ooN
ji=1
1
= [ dzIn {ao—% Bob[(z—1+&)*0(z—14&) — E20(z — ) — 2(2{ — D)0 — 2) |}
0
. R+¢ 2
= In (6b/2kT)+2¢ In P+2R 1113(@—:z +(1=2&) In (P+ &%) —4¢
_1 R+1—__§ 0+2¢-1
+0(¢ 2){2R1nR_1+2é +Q1 0_2¢+ 1+2(25 1)
(26-1y°
-(25-_1)1n[1 P ]} (10)
and
P =2p/b, R=(P+&HY?, @ =[2P+1-201-¢87]" (102)

The limit & — 0, such that af = AN, = finite, b¢* = N{B = finite, 4, B— finite,
of the formula (9), is the IW result:

= In (A/6) +Z —2tx+x*~In (Z+x%), an
with

Z = po/kT, t= AN26BKT, x = NovBo2kT. (11a)

4. The equation of state

The inspection of the Gibbs free energy g, considered as the functlon of the rangc
parameter &, shows that g(¢) has a minimum at some value of & = & < 3. For & > %
g(&) attains its lowest value at ¢ = 1, although at this point (8g/08) # 0. &, g(&o), and
g(& =1) depend on the pressure P (at a given temperature T). For sufficiently low pressures,
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g(&o) is the lowest value of all the values of g(&) over the whole physical range 0 < ¢ < 1.
However, when the pressure is raised, g(&,) increases stronger than g(¢ = 1), and above
some pressure P = P*, it is g(¢ = 1) which is now the lowest value of g(&) over the whole
range of &:

- g(é =¢&y), & <%, for P<P*
ngf 8O = {g(ﬁ =1) i for P > P*,

This behaviour is shown in Fig. la, where the quantity

(12)

4g

1 .
i [e(®—2g¢ = D]

is drawn vs. & for a few values of P, for (2kT/bo) = 0.1, {(a/bo) = 0.2.

The parameter & is the fraction of particles within the range of interaction with the
chosen particle. Assume, after IW, that & is the variational parameter, i. ¢., that the consider-
ed model is interpreted in such a way that the actual value of ¢ is to be determined by
the lowest possible value of the Gibs free energy, corresponding to the physically compat-
ible values of ¢. The interpretation of the variational treatment of the number N, of
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Fig. 1. Evidence of the phase transition at finite temperature; 2k7/bo = 0.1, a/bo = 0.2. (a) Dependence

of the Gibbs free energy on the range parameter &, for some values of the pressure P = 2p/b. (b) Equation

of state: dependence of the specific volume I vs pressure P, corresponding to the least values of g(£). For
convenience, quantities Ag/kT and (I—o)/okT, instead of g and /, are shown

particles contained within the range of attraction of one particle, was given by IW. The
only différence between our present case and the model considered by IW is that IW
keep — according to the KUH ideas — the interaction range N, and the interaction
strength B constant and finite during the thermodynamic limit N = co, and perform the
limit N, — oo at the end (hence & = NO/N — 0), whereds here Ny, — oo together with
N so that ¢ = finite.
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Fig. 2. The same as in Fig. 1, in the limit 7 — co. Dashed line in Fig. 2b shows additionally the pressure
dependence of the excess Gibbs free energy gf = g—gi4, corresponding to inf 1463}
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Fig. 3. Illustration of the IW model calculated according to the KUH prescription. (a) Three isotherms
obtained from Eq. (11). The curve labelled T = T, is the critical isotherm. T, = 442/27Bko, P, = kT./8c.
(b) Values of the range parameter x, corresponding to the thermodynamic states from (a)

With the variational interpretation, Eq. (12) describes the phase transition at P = P*.
This is shown in Fig. 1b, where (/—0)/okT, corresponding to inf g(¢) from Fig. la, is
drawn as the function of pressure, / = (9g/0P); being the specific volume (length per
particle) of the system. In the high-density (condensed) phase & = 1, i. e., all particles
are within the range of mutual interaction, whereas in the low-density (gas) phase only
about 209 of all particles do interact with the chosen one.
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The behaviour of the considered model, described above, resembles so far that of
the IW model, and in géneral, the results of the general KUH theory. However, the phase
transition obtained in the latter theories possesses the critical temperature, whereas in the
present model the phase transition persists at arbitrarily high temperatures. This is illus-
trated in Fig. 2, where the limit 7' — oo of the Fig. 1 is shown, and in Fig. 3, where the
equation of state resulting from the IW formula, Eq. (11), is presented: On the other hand,
the phase transition vanishes at T = 0: it is easy to see from Eq. (9) that in the ground
state the system is always (i. e., at every pressure) in one phase, with minimal value of the
Gibbs free energy obtained at ¢ = min (a/bo, 1). Hence, when the sequence of limits ful-
filling the KUH condition leads to the phase transition possessing the critical point, i. e.,
resembling the gas-liquid transition, the simultaneous increase of both the size of the
system and of the interaction range results also in the appearance of the phase transition,
but rather of the fluid-solid type without critical temperature.
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