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EFFECT OF NEXT NEAREST NEIGHBOURS INTERACTIONS ON
TWO-MAGNON STATES OF THE HEISENBERG
THREE-DIMENSIONAL FERROMAGNET*
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( Received November 18, 1977)

We consider a localized spin ferromagnet described by a Hamiltonian composed of
single-ion anisotropy, quadratic and biquadratic (in spin operators) terms. Apart from
the nearest neighbour, the other neighbour interactions are taken into account. A general
secular equation which determines two-magnon bound state energies is found and analysed
by means of group theory methods. Some computer results are given to illustrate the effect
of next neighbour. interactions on the two-magnon energy spectrum.

1. Introduction

Spin wave excitations in the Heisenberg model of ferromagnetism have been extensively
studied [1, 2] for a long time. As long ago as 1931 Bethe [3] proved, for a chain of spins
of magnitude S = %, that in the whole Brillouin zone there exist bound states of two spin
waves, i. e. the states which have energy less than two free spin waves with the same total
wave vector. The problem of bound states in the case of a three-dimensional model was
first attacked by Dyson in 1956 who showed that they cannot exist in the center of the
Brillouin zone [2].

In 1963 the problem under consideration was solved by Hanus [4] for a spin § = §
three-dimensional model and by Wortis [5] for both two- and three-dimensional models
and an arbitrary spin. It was found that in the simple cubic nearest neighbour interaction
Heisenberg model in the two-dimensional case, two-magnon bound states exist for any
K # 0, whereas in three dimensions there is a range of small K for which bound states do
not exist; however they appear near the Brillouin zone boundary for K exceeding a threshold
value.

* This work was supported by the Polish Academy of Sciences under project MR-1.9.
*% Address: Instytut Fizyki Molekularnej Polskiej Akademii Nauk, Smoluchowskiego 17/19, 60-179
Poznan, Poland.
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In 1970 Silberglitt and Torrance [6] and Tonegawa [7] studied the effect of the single-
-ion anisotropy on the two-spin-wave bound state spectrum. They found that it causes the
appearance of so-called “single-ion” bound states. Pink and Tremblay [8] and then Pink
and Ballard [9] extended those considerations to the case when there are either isotropic or
even anisotropic quadrupolar interactions.

There is still great interest in studying the problem of magnon bound states. The
importance of the problem is due to the fact that the exsistence of magnon bound states
imposes limits on the range of applicability of the linear or non-interacting spin-wave
theory. Besides, multiple magnetic excitations were discovered experimentally in a simple
spin system [10]. Various possibilities of experimental investigations of magnon pairing
effects were reviewed in [11].

Recently the problem of the two-magnon bound states was solved for a non localized
(itinerant) electron ferromagnet within the frame-work of a simple single-band Hubbard
model [12, 13].

Up to now, to our knowledge, all the authors who studied the magnon bound state
problem in three-dimensional models restricted themselves to the case of nearest neighbour
interactions only.

Because of the relevance of the magnon bound states problem to the fundamentals
of the spin wave theory, we find it interesting to complete the previous works by formula-
ting the problem in the most general way in order to get solutions for any dimensionality
and for interactions among neighbours from further coordination zones.

The organization of this paper is as follows. In Section II we derive the bound state
condition from the Schrédinger equation. In Section III we analyse this condition by
means of group theory methods for the case of a simple cubic lattice and two coordination
zones. Section IV gives some exemplary numerical results. Finally in Section V we discuss
the effect of next neighbour interactions on the two-magnon bound state spectrum.

2. Problem formulation

In the case of localized spin ferromagnets having the orbital angular momentum which
is not quenched, non-bilinear or anisotropic terms in a spin Hamiltonian are believed to
be of great importance.

Let our Hamiltonian contain long range spin interactions and be of the following
form

H=-DY(S*-YJu Y, 8§55~ L Ki X, (5;8,43.)" )
Jj n n.

o B
Jidn Json

where D is the single-ion anisotropy, J, — the quadratic exchange interaction, K, — the
biquadratic exchange interaction, # indicates a coordination zone and 5, points to the
lattice sites from the n-th coordination zone.

The one-magnon state can be written in the form

%> = 3 5710, )
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where S = S¥+ iS? is the spin operator which creates one spin deviation at sit; i,-and
|0> denotes the ferromagnetic ground state defined by ,

| 710> =0, S0y = —S|0). | NG

The operators obey the usual commutation relations v e
[S',Si] =286, [Si Si]= £S5 ),

The spin-wave energy spectrum may be easily compAuytre’d froﬁi the Schrédinger equatiom

H|Y) = E ¥, )
The result reads

E,(k) = D2S—1)+2S ¥ [J,+25(S—1K,] [2,— ¥ cos kd,] (6)
no o
with z, being the number of neighbouring sites from the n-th coordination zone.

Now let us construct the wave-function |¥,> of the two-magnon state in an analo-
gous way

P, = Z,(p(i’ Ds; s/ |0y - D
and look for solutions of p
H|P,> = E,|?,). ®

To determine the two-magnon bound state energy spectrum we use a similar technique
of calculations as that of [7] or [14]. After having introduced the centre of mass coordi=
nates we get

@(i, j) = ; @x(r;—r;) exp [iK(r;+r;)] €

(Ho+V)px(R) = E;px(R), (10)
where

Hopx(R) = 4S Z [J,+25(S—1)K,] [z,,<pK(R)— z cos_IZ‘: 3”¢K(R+5,,):| . (11)

3”
Vor(R) = A(R) {—2D¢K(O)+4S(ZS—\1) Z K, Z cos L K3, [an(S,,)
—cos —125 SnwK(O)]} +4(R-3,) { —[2J,+K, (128> —125+2)] [¢K(3")
s X3m0]]

R=0,{5}15..- (12
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Above {3,} means a set of z, lattice vectors from the nth coordination zone, and A(R)
equals 1 for R = 0 and vanishes for R # 0.

If there were no magnon interactions (V = 0), we would get immediately the ob-
vious results

ou(R) = &, (13)
and
E)(K, k) = E\(}K+k)+E, (LK—k). (14)
In order to solve the full equation (10) let us define a Green function
Gy(R) = cos kR (15)
. N/ _E,—ExK k)
which satisfies
HoGg(R)—E;Gg(R) = — A(R), (16)
where N is'the number of lattice sites in the crystal. We look for a solution in a form
px(R) = RZ Ag(R)Gg(R—R). (17)
By substituting (17) into (10) and by using (16) we find
- Ax(R) = Vog(R). (18)

Now we express the right-hand side of Eq. (18) in terms of the amplitudes A (R) using
(12) and (17) In thls way we find the set of 1 +Z z, lmear equations with respect to A g(R).

The exphc1t form of the set reads

{1+ (2d+ Z ZCOS — 35, )gK(O) 2 Z cos—é gk (3, )] Ag(0)

Bu’
AR K -
’ ZZ {lr 200 0 w0 T3 Juh
—%— Z Un” Z Cos ? gn"[gK(gn"—
n'’ -(;n”
‘+gK(3n~+5’nl)]} [4x@n)+Ax(=8,)] = 0, (19)
i

[gK(fSn) cos —- 5,.81((0)] 4x(0)

+V, z Z { [8x(Bn—3s)+ 8k (B +6,)]

K . o = o -
—Cos 7 5ngK(én’)} [AK(én’) + AK( N 5n’)] i AK(an)’ (lgb)
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where

U, = 8SQS—1)k,, V, = 2j,+k,(125>—125+2),
jn .| Jn/'jl: kn . Kn/J17 d = D/Jl? gK(R) i JIGK(R)s

and >’ means the sum over the vectors 5, linearly independent on each other (inversiom
symmetry is assumed). It can be checked that the results of other authors are properly
reproduced by the set (19) and correspond to an appropriate choice of the parameters
(cf. [5-8)).

The effect of next nearest neighbour interactions was studied only in the case of

a one-dimensional model [15-17].

The set of equations (19) makes it possible to test the effect of next (and even further)
neighbour interactions on the two-magnon bound state not only for a spin chain but for
two- and three-dimensional lattices as well.

3. Group theory analysis

As an example let us consider a simple cubic lattice with next nearest apart from
nearest neighbour interactions. Then the vectors 6, take on the following values

{6:} = +ae,, tae,, tae, (20a)

{02} = *ales+e,), £ale,—e,), ale, +e;), +ale;—ey), tale,+e;), +ales—ey)
(20b)
for the first and the second coordination zone, respectively, where a is the lattice constant

and e;, e,, e; are the basis versors.
Our detailed considerations will be carried out for the wave vector K oriented

along the highest symmetry- direction i. e. for K = K, [1, 1, 1].
The problem is now of the order 19x 19 (z; = 6, z, = 12), and the set of Eqs (19)
‘may be written in a matrix form
MxA =0, (21)
where
AT =110y, (1), 12), 13), ..., [17), [18)],
10> = Ag(0), (1) = Ag(ae,), [2) = Ag(—aey),
13> = Ag(aey), ..., 175 = AK(a(esb—ez)), [18) = Agx(—a(e;—ey)) (22)

and the matrix- elements M;; are given in Appendix.
Eq. (21) has non-trivial solutlons when the determinant of the matrlx M vamshes
Our aim is to find such a unitary matrix U which would transform M to a “block
form”. To achieve this we shall use the theory of point-group representatlons [18-20].
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The matrix U operating on the set of the localized functions [r) (n =0, 1, ..., 18)
must transform it into the set of the symmetrized linear combinations |o, R(x)> which
transform as bases of irreducible representations of the point-group under consideration.

18 .
lo, R(2)) = IZO U(l; o, R() [, (23)

where o specifies an irreducible representation according to which a given symmetrized
combination transforms, and R(x) enumerates those symmetrized combinations.

It follows from (22), (18) and (12) that for K = K, [1, 1, 1] only these of the functions
{n> can transform into themselves which, as it is shown in Fig. 1, are marked with the

s

|5 11
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Fig. 1. Symmetries of the localized functions |n) for the s. c. lattice and K = K, [i, 1, 1]

same pattern. All the symmetry operations which leave the set of the functions ) un-
changed form the group D,,. This group consists of 6 classes. Using the character table
we have decomposed a reducible representation I' of the group D;, into the irreducible
ones

where Bouckaert, Smoluchowski and Wigner’s nomenclature is ’adopted. The represen-
tations I'y, and I'j, are two-dimensional, the others are one-dimensional.

After having found the irreducible representations, we determine the symmetrized
functions |, R(a)) which transform according to them (see Appendix of [18] for a detailed
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description of similar considerations). The unitary matrix U can now be easily constructed
by forming its columns from the symmetrized functions. The final result is

1000 0 o0 0 0 O O O O O O O O O O O]
0a00 b 0 0 ¢ 0 0 0 a 0 ¢ O 0~b 0 O
0a00 b 0 0 ¢ 0 0 0—-a O0—-c 0 O b 0 O
0a00-b 0 0 ¢ 0 0 0 a 0 ¢ 0 0 b 0 O
0a00-b 0 0 ¢ 0 0 O0-a O0-c O O—-b O0 O
0a00 0 0 0-d 0 0 0 a 0-d 0 0 0 0 O
0a00 0 0 O0-~d 0 O O0—-a 0 d4d O O 0 O0 0O
00a0b 0 0 0 0 d 0 O O a 0-d 0 O 0 0
00a0 0.0 0 O 4 0 O O0-a 0 d 0 0 0 O
U= |0 0a0 0 b 0 0—-c O O O a 0 ¢ O 0 b 0|
00a0 0 b 0 0-¢c 0 0 O—a 0-c 0 O0—b O
00a0 0~-b 0 0—-c 0 O O a 0 ¢ 0 O0-b O
00a0 0~-b 0 0 - 0 0 O0-a2a O0-c O O b O
000a 0 606 O O O d a O O O O O O 0 d
000a 0 0 0 O O d-a 0 O O 0O O O O —d‘
000a 0 0 b 0 0~ a 0 0 O O b 0 O —c|
000a 0 0 b 0 0—-c—a 0 0 O O0-b 0 0 ¢
000a 0 0-b 0 0O-c—-a 0 0 0 O b 0 0 c
000a 0 0~b 0 O0—-c a 0 0 O O0-b 0 0 —c| (29
\_W__J . N — - HK—J s Y 4
r, I, ri r, I,
where a = 1/\/6, b = 1/2, ¢ = 1//12, d = 1\/3.
This matrix reduces M to a block diagonal form
F, i
F,
U'MU = , (26)
F,
E
where E is a 9x9 unitary matrix and
[ MOO \/6M01 \/6M07 \/6M0,13
VJ6Miy My +My,+4My, 2M 11 +4M 4 2M;,17+4My 15

F1= _
J6 Moy 2Mos+4M,, M7 +Myg+4Moo 2Moy 1 3+4M; s

\/6 Miso 2M3,5+4M 5, 2M 3,7 +4M 5 Mis,13+My3,04+4M 3 45
27



852

M (+M,—2M3 2M7~2M, 44 2My13—2M 47
F, = |2M7,—2M; My +Mog—2M79 2Mq 13—2M7 45 . (28)
2M 3,4 —2M 3,5 2My37—2M 3,9 M35+ Mi3,14—2My3,45

It follows from (26) that (similarly as if there were no next nearest neighbour inter-
actions) there are only two conditions which determine the two-magnon bound state
energies: one for the singly degenerate (s-wave) states and the other for the doubly degen-
erate (d-wave) states. The modes of I'y, I';, and I';, symmetries are absent. Egs. (26),
(27) and (28) are the main result of the present paper. In the case when the next nearest
neighbours effect is neglected our results become identical as those of Pink and Tremblay
[8], obtained by a different method.

4. Numerical results
Our aim now is to find the energy of two-magnon bound states from the equations

det (F) =0 (29a)
and
det (F,) = 0. (29b)

The matrix elements which enter into (27) and (28) contain the following parameters:
d, j,, ky and k,.

These parameters should be chosen in such a way so that the single magnon spectrum
(6) is stable i. e. E(k) has a minimum for k = 0. From this requirement we get (cf. [17])

1+2S(S—1) ky+4[j2+2S (=D k;] > 0. 30)
We shall illustrate the solutions of Egs. (29) considering a specific choice of param-

eters, namely
d= k1 = k2 == 0, S = 1, j2 > —1/4. (31)
Solutions of (29) which correspond to the two-magnon bound state energies are looked
for outside of the two-magnon band. The band is bounded by (see (14) and (6))
enin(K) = min, E;(K, k) and &, (K) = max; E,(K, k) 32)
The extrema (32) depend strongly on j, and are
® _% <Lja <0

_fgy for 0<X <Xy,
minl K) = {82 for X, <X <mn,

g5 for 0<X <X,

= 3
) { R A (332)

(b) j. =0
Smin(K) = &g, smax(K) = &3, (33b)



0<X <X,
X, <X <m,

0<X<X1a
X, <£X<Lm,

0<X <X,
X, <X <m,

(©) 0<ja<7%
_Jey i
amin(K) - {86 if
_Jes if
smax(K) - {85 lf
@ 2 <i
_jegyif
Smin(K) o {86 lf
Smax(K) = &s,
where

X =K.a,

1 1 e
X, =2arccos[ . —%(—2 —4) ],
472l 4j5

1 1/2
+3l—= +2 .
2&% ) J

X, =2arccos[—— -
16},

X
g =24 (l—cos ;) +24j,(1 —cos X),

853

(33c)

(33d)

. X 4 , X . , X 5 X . X
&, = 24—~64]j,|—8 cos — — —— cos” — +16]j,| cos E+16cos —2——16}]2[c0s 3

2 |l 2

X
g3 =24 <1+cos 5) +24j,(1~cos X),

cos? —

2
&4 = 24(1—|j,| —|j2l cOs X)— — ]
{ja,] cos X

&5 = 48—'82,

&g = 48“‘84‘

The results of numerical computations are plotted in Fig. 2. It shows that when j, in-
creases the whole energy spectrum moves upwards. The question arises whether there is any
threshold value of j, for which the magnon bound states would not exist below the band
any longer. To make this point clear we have computed the two-magnon bound state

a

. T )
energies at the Brillouin zone boundary ( i. e. for K, = —) vs. j,. In this case we get
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Fig. 2. The energies of two-magnon bound states for a s. c. lattice with S = 1and (a)j, = —0.02,(b)j, = 0,
(c) j» = 0.02. The upper curve is doubly degenerate (d-wave) and the lower one is non-degenerate (s-wave).
Hatched area is the two-magnon band
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Fig. 3. Bound state energies with K = — [1, 1, 1] versus j,
a
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solutions which are three-fold degenerated (F, itself is doubly degenerate). This solution
moves more and more close to the band when |j,| increases and disapears for a threshold
value j,, = 0.05. This behaviour is shown in Fig. 3.

5. Conclusions

We have calculated the effect of next nearest neighbour exchange interactions upon
the two-magnon bound states of an three-dimensional Heisenberg ferromagnet. Using
an equation of motion mthod we have found a general secular equation which determmes
the two-magnon bound states energy spectrum. The equation has been analysed by means
of group theory methods. We have shown that for a simple cubic lattice there are two
types of solutions corresponding to s-wave states and d-wave states (doubly degenerated)
respectively. Detailed numerical calculations have been carried out, in accordance with
the practice of other authors, for a wave vector K in the [111] direction. The parameters
were chosen from the range within which the ground state may be assumed to be fully
aligned. The principal result which has come out of this work is the observation that the
next nearest neighbour exchange interactions have very strong effect on the behaviour of the
two-magnon bound states. This effect becomes drastic and makes the two-magnon bound
states vanish, when the next nearest neighbour exchange parameter reaches a value of 5%
of the nearest neighbour exchang parameter.

The author wants to give special thanks to Professor J. Morkowski for bringing this
problem to his attention.

APPENDIX

The matrix elements M;; for a simple cubic lattice are listed below. In the case when
two coordination zones are taken into account the matrix M is of the order of 19 x 19. For
the wave vector K lying in the [111] direction there are only 28 different matrix elements,
they are: .

Moo = 1+2dg, —3U (g, —cgs)—3U,C(g4— Cg1)—3Valgs —g1),

Moy = Moy = Mgy = Mo, = Mys = Myg = 2dg,—Uqc(gs+286—3cg2)— U,
x[C(2g7+ 8o —3Cg2)+285+ 8103821,
Mo, = Mog = Moy = Mo,10 = Mo,11 = Mo,12 = 2dgs— U (g9 +287—3¢g4)
—~U,[C(2g14+811—3C84)+2815+813—384);
Mo,13 = Mo,14 = Mo,15 = Mo,16 = Mo,17 = Mo,15 = 2dgs—U,c(g10+28s
~3cgs)—U,[C(2815+813—3Cgs) +2816+812—385],
Mo = Mo = M3y = Myo = Mso = Mgo = Vi(g2—¢g1);
Mqo = Mgo = Moo = Myp,0 = Mi1,0 =Mz, = Vz(g4—Cg1)’
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Mis0 =My = Miso = Myg,0 = M17,o = M1s,o = V(85— 81)
My = Mj; = M3z = Myy = Mss = Mgg = 1+ V,(g3—cgs),
My7 = Mgg = Mgy = Myg10 = My1,11 = Myz,1; = 1+V,(g4; —Cgy),
Mias = My a = Mys 5 = Myg16 = Mi7,17 = Myg s = 1+V,(g12—g5)s
My, = Myy = Msg = My = Myz = Mgs = Vi(g3—cgs),
Mg = My, 10 = My, = Mg; = Mg, = M1_2,11 = V(811 C84)s
M13,14 = M14,13 = M;s,16 = M16_,15 = M17,1s - M1s,17 = V(812 85),

My =My = Mys = Myg = Ma;y = My, = Mgy = Mgy = My = Mjys = Ms,
= Mg, =My = Mys = Mg = M3s = Mys = My, = Mg, = Ms, = Mes = Ms,
= M;; = M3, = Vi(gs—cg2),

M7 =M = Mg = Mj0=Ms; = Mj 1= Myg = My, 12 =Mso = M5y,
= Mg,10 = Mg,12 = Mg = M7 = Mg = My; = M5;12 = Me,11 = My,10
=My = M3,12 = My = Ms 10 = Mgy = Vi(g7—¢84)s
M1 =My, = M= M2 = Mg = M3,10 = Myo = My,10 = M5,
= Mss = Mg7 = Mgg = V1(go—cg4),
Mi 13 = M4 =My s = My 6 = M3 = My ga = M; 15 = M 5
= Mj13 = M;,4, = M;,1q = Ms,8 = M4,13 =My14a=M417=Mys
a M5,15 = M6 = Ms,17 = Ms,18 = Ms,15 = M6,16 = Ms,17
= Ms,15 = Vi(gs—cgs),
M7 =M ;5= Mj,17 = My, = M3,155= Mij,16 = My,1s = My
= Ms,13 = Ms14 = Mg,13 = Mg 14 = Vi(g10—85s)s
Mo = M7,10 = Mgy = Msg,i0 = Mo,11 = Mo,12 = Myo,12 = M7,11 = Myo,11
=My = Mg, = Mg i3 = Mgy = Myo,7 = Mog = Myos = Mys,0 = M1z
= Mii,10 = Miz10 = My1,7 = Myz7=Mi15 = Myps = Va(g14—C84),
M3 =Mqy4 = Mg,13 = Mg14 = Mg, 15 = Mg 16 = Myg,15 = Mio,16
s M11,17 =Mi1,15 = M12,17 = M12,18 = V(813 —Cgs)s
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Mjys =Mqi6=Mqy7=Mq13 = Mg 5= Mg15=Mg;7; = Ms 18
= Mo,13 = Mo 14 =My 17 = Mg 13 = Myo,15 = Myg,14 = Mio17 = Mio,15
=Mi13 =M. = M11,15 = M11,16 =M;,3 = M4 = M12,15
= Mi3,16 = Va(g15—Cgs).
My =Mqy =Mqy =My = Mg, = Mgy = Mgz = Mg, = Mgy = Moy = Mos
= Mg = Mgy = My, = M1q,5 = Mo = My13 =My 4 =M
=Miy6=Mizs=Mis=Ms=Mpe = Vyg—Cgy),

M5 = M = Mgs = M9'3 =My, = M10,3 . M10,4 . M11,1 = M11,2 . M86
=My, =My, = Vy(go—Cgy),

= M17,3 = M17,4 5 M17,5 = M17,6 = M18,3 . M18,4 . MlS,S = M1s,6
= V(g5 — 82)-
M13,5 o M13,6 . M14,5 = M14,6 = M15,3 - M15,4 = M16,3 . M16,4
=Mi7,=M;;, = Migs = Mg, = Va(g10—82)s
M13,7 = M18,8 = M14,7 . M14,s . M15,9 . M15,1o = M15,9 = M16,10

=M, = Mg, = Mg 11 = Mig,12 = Va(g813—84)>

M13,9 b M13,1o = M13,11 . M13,12 oh M14,9 b M14,1o e M14,11
= M14,12 = M15,7 = M15,8 = M15,11 = M15,12 = M5

M13,15 = M13,16 . M13,17 = M13,1s b M14,15 . M14,16 . M14,17
= M14,1s — M15,17 = M15,1s == M16,17 = M16,18 il M15,13 = M16,13
= M17,13 . M18,13 = M15,14 . M16,14 = M17,14 . M1s,-14 . M17,15

= Mig,5 = Mig,46 = M18,16 = V(816 —8s)»

where

¢ = cos (K,a/2), C = cos(K,a),
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g1 = l/N; 1/W7

g, = 1/N Y, cos kalW,
E

g; = 1/N ; cos® kalW,
g.=1/N zk: cos (k. +k,)a/W,
g5 = 1/N§_c: cos (ky—k)alW,
ge = 1/N ; cos k,a cos k,a/W,

g; = 1/N ;'cos k.a cos (ky+ky)a/W,

gz = 1N ; cos k,a cos (k,—k,Ya/W,

gy = 1N ; cos kya cos (k,+k,)alW,
g0 = 1/N % cos k.a cos (k,—k,)a|W,
g, = 1/N % cos® (ky+k,)alW,
2, = 1/N % cos? (k,—k,)a/W,
g3 = I/N Xk: cos (k,+ky)a cos (k,—ky)a|W,

814 = 1/N' Y cos (k,+k,)a cos (ky+k.)al/W,
2
g15 = 1/N Y cos (k. +k,)a cos (k,—k,)a/W,
%
g16 = 1/N'Y cos (k. —k,)a cos (k,—k.)a|W,
2
and
W = E,|J,—2d(2S—1)+8S[1+425(S—1)k,] [(cos k.a+cos k,a-+cos k.a)
x cos (K,a/2) —3]+8S[j, +2S(S—1)k,] {[cos (k;+k,)a+cos (k,+kz)a
+cos (k,+ k,)a] cos K,a+cos (k,—k,)a+cos (k,—k;)a+cos (k,—k;)a —6}.
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