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IDEAL ELECTRICAL RESISTIVITY OF ALKALI METALS
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The temperature dependence of the ideal electrical resistivity of alkali metals is theoreti-
cally investigated using various screened pseudopotential approximations for electron-ion
scattering. The structure factor of the ion system is obtained in the one-phonon approximation
from the phonon dispersion relations deduced on Sharma and Joshi’s model modified by
incorporating angular ion-ion interactions of type proposed by de Launay and Clark et al.
The calculated resistivities show reasonably good agreement with experiments, except for
lithium at very low temperatures.

1. Introduction

It is an interesting problem in solid state physics to calculate accurately the electrical
resistivity of simple metals. The problem is by no means straightforward, and has been
the subject of investigation by many workers since 1928, when Bloch [1] first accounted
for the qualitative features of the electrical resistance of metals. The first _satisfactory
approach to the problem was given by Bardeen [2] who calculated the electrical resistivity
of monovalent metals from first principles. Bardeen made use of a simple Debye model
for the phonon spectrum and assumed the electronic behaviour to be free electron like be-
cause of inadequate knowledge of these quantities in those days.

Considerable effort has been devoted in recent years to improve upon these approxi-
mations in the calculation of electronic transport properties of metals. Many workers,
notably Ziman [3], Bailyn [4], Bross and Holz [5], and Hasegawa [6] have developed
variational approach in studying the transport coefficients of alkali metals by taking into
account detailed phonon spectrum and simplified models for electronic band structure.
Greene and Kohn [7] have used a phase shift analysis for differential scattering cross section
for electron-ion scattering to carry out detailed calculations of the temperature dependence
of electrical resistivity of sodium. In spite of several sophistications (e.g., Umklapp processes,
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many-body effects, time-dependent effects, and dynamics of ions from neutron data), the
agreement of the theory and experiments is not encouraging. In the recent years, the.
method of pseudopotentials [8] has proved to be an elegant theoretical framework for
the calculation of various properties of simple metals. With the advent of reasonable pseudo-
potentials and the structure factors, there has been increasing interest in the pseudo-
potential study of the transport properties of metals at various levels of consistency and
sophistication [9-14]. The advantage of the pseudopotential approach lies in the fact
that it permits one to take into account the Umklapp processes and coupling to transverse
phonons without considering intermediate description of lattice vibrations in terms of
phonons.

Resistance to the transport of electricity and heat in pure metals is mainly caused
by the scattering of conduction electrons by the thermal motions of the ionic lattice. The
theory of the ideal (intrinsic) electrical resistivity, a characteristic property of metals,
has been given by many authors, in details, by Ziman [15] and Baym [16]. In Ziman-Baym
theory, these transport coefficients depend on two main elements, namely, the electron-ion
pseudopotential matrix element ¥(g) describing electron-ion core scattering and the
dynamical structure factor S(g, ) of the ion system. The theoretical study of the transport
properties hinges on the evaluation of these two quantities on suitable models. In the
one-phonon approximation, the dynamical structure factor is directly related to the phonon
spectrum and can be determined from various models for the lattice dynamics of metals.

In the present paper, we report a calculation of the ideal electrical resistivity of alkali
metals as a function of temperature using various screened pseudopotential approximations
for electron-ion scattering and modified form of Sharma and Joshi’s model [17], which
includes angular forces [18, 19] between ions, for the phonon dispersion relations. The
form factors of the electron-ion pseudopotential are obtained from the Heine and Abaren-
kov [20] model, Shaw [21] model and its modification by Shyu et al. [22}, Bortolani and
Calandra [23] model, Giuliano and Ruggeri [24] model, Lee and Heine [25] model, Schneider
and Stoll [26] model, Ashcroft [27] model, Sharma and Srivastava [28] model, and
Bardeen [2] model. The Giuliano and Ruggeri atomic form factors are taken from the
tabulation of Cubiotti et al. [29]. The dynamical structure factors of the ion system are
determined in the one-phonon approximation from the phonon spectrum derived by
modified Sharma and Joshi’s model including angular forces. The choice of alkali metals
for this study is motivated by the fact that they are the simplest of bee metals and appear
to approximate well to the free electron model of a metal. By contrast with other metals,
they have been- studied by many theoretical workers, particularly in regard to several
properties. Further, the electrical resistivity and elastic constants of these metals have
been the subject of extensive experimental investigations by many workers.

2. Theory

Ziman [15], Baym [16], and Greene and Kohn [7] have given general derivation of
the ideal electrical resistivity of simple metals caused by scattering of conduction electrons
by lattice vibrations from a variational solution of the Boltzmann equation. In the relaxation
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time approximation, the ideal electrical resistivity g; can be written as [15]

m -1

nzer ™ P
where m is the bare electron mass, ¢ — the electronic charge, n — the number of ions
per unit volume, and Z — the valence of the metal. In the pseudopotential approximation
and using the simplest trial function, for lattices with cubic symmetry, the relaxation
time 7, for electron scattering by lattice oscillations is given by [16]
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where 8 = h/k,T and q = k’'—k is the scattering vector. Here k and k' are the electron
wave vectors defining the one-particle initial and final states, v, — the electron velocity
in the state k, ky — the Fermi wave vector, and Sg— the area of the Fermi surface.
(k'|V|k) is the pseudopotential matrix element describing the scattering of electron from
state k to state &’ both on the Fermi surface with the absorption of a phonon of energy
hw and momentum #q. The two surface integrals extend over the Fermi surface. S(q, )
is the dynamical structure.factor introduced by van Hove [30] and is the Fourier transform
of the time-dependent pair correlation function, viz.,
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where <...>r represents a thermal average at temperature 7, r/(t) is the posifion vector
of the i-th ion at time ¢, N is the total number of jons and the summation is over all the
ions in the lattice. The spectral function S(g, w) contains necessary information about
the dynamics of jons and provides a measure of the density fluctuations in the lattice.
For a spherical geometry of the Fermi surface and assuming that the matrix element
CK'|V|k) is a function of ¢ alone, the two surface integrals can be changed into a three-
-dimensional integral over ¢ by using the result
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where Q is the solid angle in the wave vector space.
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The dynamical structure factor S(g, ) can be easily calculated by using the harmonic
theory of the lattice dynamics. Writing the ion position vector r(t) equal to the equilibrium
value r(0) plus the displacement u,(t) and expressing the displacement vector in terms
of creation and annihilation operators in the one-phonon approximation with the further
assumption that the phones are in thermal equilibrium, S(q, w) can be written as

h 1 (e, q)*
S(g, @) = — — T (8o —w,)+ e Caid(w+ w,;), 7
(9. 0) = 5= E o (o ) GO0+ @+ 0,) ™
i
where M is the mass of an atom, w,; is the angular frequency of a phonon of wave vector g
with polarization index j, and e,; is the polarization vector. Inserting (7) into (6) we obtain

h* (e 9’
i

Equations (1), (5) and (8) show that the basic quantities for investigating the electrical
resistivity are the effective pseudopotential matrix element. V(g) and the structure factor
S(q). The structure factor S(g) depends solely on the lattice dynamics of the metals. Van
Hove [30] has pointed out that S(g, ) can be obtained directly from neutron scattering
data. However, the present measurements are not in sufficient details to allow the evaluation
of the formula (6). In the present work we have used the lattice dynamical model of Sharma
and Joshi [17] modified by including angular forces between the ions to evaluate S(g)
from Eq. (8). The angular forces have been introduced on the lines proposed by de Launay
[18] and Clark et al. [19]. Both of these angular forces (known as DAF and CGW models,
respectively) are assumed to be significant between first two neighbours only involving
two angular force constants. The secular equation determining the angular frequency
of the normal modes of vibration can be written as

ID(q)—McoZI] = 0, )

where M is the mass of an atom and 7 is the unit matrix of order three. Each element
D,;(i, j = x, y, z) of the dynamical matrix D(g) is sum of three contributions due to central,
angular and electron-ion interactions. The final expressions for the elements of the dynam-
ical matrix for the de Launay type of angular force (DAF) are obtained as

Di(q) = 5 (a2, +2K ) (1 - Cicjck)+4a2‘si2+4K2(s]2'+S£)+4Kea3qi2G2(qr0)a

Difg) = % (2, —KS;S;Cp + 4Kea3(:Ziqu2(qr0)a (10)
where

; = sin (q;a), C; =cos(qa) and G(x) = 3(sin x—x cos x)/x>.

In these equations, ¢ is the semi-lattice parameter, g; is the i-th cartesian component of
wave vector g, 7o is the radius of Wigner—Seitz sphere, o, and «, are the force constants
for the first and second neighbour central interactions respectively, K, and K, are the
angular force constants for first and second neighbours respectively, and K, is the bulk
modulus of the electron gas. »
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The corresponding expressions for elements of the dynamical matrix on the angular
force of Clark et al. (CGW) are given by

Di(q) = 8(at; +2y,+3y,) 1 -C,C Co)
‘|‘4°‘25i2—4V1(SJZ'+SI%_4Sz'2)+6)’z(SZ+Sk)+4K a3q12G2(qr0),
Difq) = 8(oty =y +3 Vz)SiSjCk+4Kea Qqu'G (g7o), ‘ 1y

where y; and y, are the angular force constants corresponding to the nearest and next
nearest neighbour interactions respectively for the CGW type of angular forces.

3. Pseudopotential models

In recent years, considerable effort has been devoted to establishing the effective
potential to represent electron-ion interaction in metals either from first principles or on
a pseudopotential concept. Detailed knowledge of this quantity is essential for the determi-
nation of fundamental properties of metals, including, for example, band structure, Fermi
surface, transport and equilibrium properties. Several authors have developed various
kinds of pseudopotentials to fit the experimental data for different physical quantities
of the solids. A good account of the pseudopotential formalism and its application to metallic
properties is now available in a number of review articles [31, 32] and in Harrison’s book [8].
Here we outline the salient features of various pseudopotential models relevant to the
present study.

Bardeen [2] was the first to use a primitive form of pseudopotential in the study of
electron-phonon interaction in metals. Around each bare ion, he draw a Wigner-Seitz
sphere of radius rg, outside of which he took the field to be Coulombic and inside the
sphere he replaced the Hartree-Fock field by a square well of depth U,. The most ex-
tensive calculations of the electron-ion pseudopotential expressed in the model form from
first principles have been described by Heine and Abarenkov [20] using observed spectro-
scopic data pertinent to free atom. These authors assumed an angular momentum dependent
model potential for the bare ion, consisting of a square well up to a suitably chosen
radius R,, and the Coulomb potential beyond it. Animalu [33], and Animalu and Heine
[34] have been modified the original model potential of Heine and Abarenkov by intro-
ducing non-local screening of electrons and orthogonalization holes. In another modifi-
cation, Shaw [21] has reformulated the Heine and Abarenkov model potential is an inter-
nally consistent manner by taking into account both the nonlocality and the energy
dependence of the potential in the Hartree approximation. Recently Shyu et al. [22]
have constructed pseudopotential form factors for simple metals from Shaw’s nonlocal
model potential by including exchange and correlation effects and have studied a number
of metallic properties. Bortolani and Calandra [23] have worked out the electron-ion
scattering form factors of heavy alkali metals by taking into account the effects due to
the d excited bands in the Heine-Abarenkov model potential. Giuliano and Ruggeri [24]
have recently proposed a new form factor of atomic model potential by fitting the param-
eters from the spectroscopic data of free alkali metals. This model potential has some
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advantages over that of Heine-Abarenkov due to the absence of discontinuities and the
correct behaviour at large distance as well as near the nucleus. Lee and Heine [25] have
obtained the APW pseudopotential form factors to represent the electron-ion interaction
in alkali metals by phase shift analysis of the Fermi surface data. Schneider and Stoll [26]
have obtained the bare-ion potential for a simple metal by fitting the neutron data to
his calculated dispersion curves. Recently Sharma and Srivastava [28] have proposed
a parametrized expression for the electron-ion interaction potential in simple metals.
This model involves a single adjustable parameter and represents in some way improve-
ment over that proposed by Ashcroft [27] who has also used similar arguments but his
expression corresponds to an empty core potential for r < r,, where r, is a parameter
measuring the size of the ionic core in a metal.

4. Numerical computations

We have carried out calculations of ideal electrical resistivity of alkali metals (Li,
Na, K, Rb, Cs) at different temperatures from Egs. (1), (5) and (8). The pseudopotential
form factors ¥(gq) for these metals are taken from the model potentials of Bardeen [2],
Schneider and Stoll [26], Ashcroft [27], Sharma and Srivastava [28], Heine and Abaren-
kov [20], Shaw [21], Shyu et al. [22], Bortolani and Calandra [23], Giuliano and Ruggeri
[24] and Lee and Heine [25]. The structure factor S(gq) is determined from Eq. (8) using
both forms (DAF and CGW) of modified Sharma and Joshi’s model for phonon frequencies
and polarization vectors. The integration over ¢ in Eq. (5) was performed numerically and
the angular integration was done by using a imodification of Houston’s spherical six-term
integration procedure as elaborated by Betts et al. [35]. If /{0, ¢) is any function which is
invariant under the operations of the cubic symmetry group and f is the value of f(6, @)
for a given direction specified by 4, then the Betts et al. six-direction approximation is
as follows:

4
6, $)dQ = 117603 6544
ff( ¢) 1081080[ 7603f,, + 765445+ 174961
+381250f,, + 311040 + 177147f¢ ], (12)

where the letters A, B, C, D, E and F represent the six directions [100], [110], [111], [210],
[211] and [221], respectively. The force constants (e, «,, Ky, K, Or 7,, 7,) and the electronic
parameter K, of the DAF and CGW models are determined by two different methods.
In the first method, they are calculated in terms of three elastic constants (Cyy, C;2, Cas)
and two experimentally known zone boundary phonon frequencies, viz., v, (100) and
vi(3 3 3), one longitudinal and other transverse in the [100] and [111] directions respec-
tively. The value of K, so obtained is called experimental K;. In the second method, the
bulk modulus of the electron gas is calculated quantum mechanically using the theoretical
expression of Overton [36]. This value of K, is referred to as theoretical K,. The remaining
four force constants are evaluated in terms of three elastic constants using the long wave
limit and the experimental value of phonon frequency v, (100) of the transverse branch
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at the zone boundary in the [100] direction. The values of the zone boundary frequencies
were obtained from recent neutron scattering experiments except for caesium for which
theoretical values are used. The elastic constants and other relevant parameters used
in the present calculation are recorded in Table I

TABLE I
Constants for alkali metals
Elastic constants | . Phonon frequencies |
11 P Lattice % )
(10 dyn/cm?) | Temp.* (10'2 Hz)
Metal | Ref. | parameter ) ‘ Ref.
e | | e G | n100) 71D
i | L . _ ‘—
Lithtum 1.481 ‘ 1.248 1.077 [a] | 3.482 | 78 8.820 | 7.22 If]
Sodium ‘ 0.808 | 0.664 0.586 [b] 4.24 90 3.58 | 2.88 [e]
Potassium 0.416 0.341 0.286 | Ic] 5.226 4.2 2.21 ‘ 1.78 [hl
Rubidium | 0314 | 0264 | 0.189 ‘ [d] ‘ 5.617 ‘ 110 1.32 1.10 ‘ il
Caesium 0.261 0.215 0.160 [e] 6.044 4.2 1.008 | 0.868 [31

* Temperature to which elastic constants refer.

[a] H. C. Nash, C. S. Smith, J. Phys. Chem. Solids 9, 113 (1959).

[b] W. B. Daniels, Phys. Rev. 119, 1246 (1960); S. L. Quimby, S. Siegel, Phys. Rev. 54, 293 (1938).

[c] W. R. Marquardt, J. Trivisonno, J. Phys. Chem. Solids 26, 273 (1965).

[d] E. J. Gutman, J. Trivisonno, J. Phys. Chem. Solids 28, 805 (1967).

el F. J. Kollarits, J. Trivisonno, J. Phys. Chem. Solids 29, 2133 (1968).

[fl H. G. Smith, G. Dolling, R. M. Nicklow, P. R. Vijayaraghavan, M. K. Wilkinson,
Proc. International Conference on Inelastic Neutron Scattering, IAEA, Vienna 1968, Vol. I, p. 209.

[g] A. D.B. Woods, B. N. Brockhouse, R. H. March, A. T. Stewart, Phys. Rev. 128, 1112 (1962).

fh1R. A. Cowley, A. D. B. Woods, G. Dolling, Phys. Rev. 150, 487 (1966).

[il J. R. D. Copley, B. N. Brockhouse, Can. J. Phys. 51, 657 (1973).

[i1 A. O. E. Animalu, F. Bonsignori, V. Bortolani, Nuovo Cimento 44, 159 (1966); based on
Heine-Abarenkov model potential calculation.

5. Results and discussion

Figures 1—5 show the calculated values of the electrical resistivities of the five alkali
metals as a function of temperature together with available experimental data. It will
be seen that the results change with the phonon spectrum and the pseudopotential form
factors. For experimental as well as theoretical K, respectively, .the DAF and CGW
models give exactly similar results and are therefore not shown separately in these figures.
The sources of experimental resistivity values plotted in these figures are summarized
in Table II. Most earlier measurements on electrical resistivity have been ignored as they
are less detailed and unsatisfactory and show several anomalies in the temperature
variation of the resistivities (cf. MacDonald [37]), not confirmed by later workers. They
do not allow a detailed analysis of ideal electrical resistivity over a continuous temperature
range because of insufficient measurements and lack of purity of specimen. Except for
sodium, there are not many measurements on the electrical resistivity of alkali metals.
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TABLE 1I

Temperature ranges for the experimental electrical resistivity data for alkali metals

|
t
Metal Temperez Il{,l;‘e range | Source '

Lithium 10—90 [a]
11—90 | [b]

80—290 [c]

Sodium 3,215 b]
490 [d]

40—360 | [e]

50—295 [c]

Potassium 1—25 | [f]
2.5—20 [2]

3.5—60 [b]

8—295 [c]

Rubidium 2—300 [h]
2.6—20 ' (bl

Caesium 2—7 [b]
2—300 [h]

[a] H. M. Rosenberg, Phil. Mag. 1, 738 (1956).

[b] D. K. C. MacDonald, G. K. White, S. B. Woods, Proc. R. Soc. A235, 358 (1956).
[c] J. S. Dugdale, D. Gugan, Proc. R. Soc. A270, 186 (1962).

[d]R. Berman, D. K. C. MacDonald, Proc. R. Soc. A209, 368 (1951).

[e]l J. G. Cook, M. P. van der Meer, M. K. Laubitz, Can. J. Phys. 50, 1386 (1972).
[f] J. W. Ekin, B. W. Maxfield, Phys. Rev. B4, 4215 (1971). -

[e] G. G. Natale, I. Rudnick, Phys. Rev. 167, 687 (1968).

[h]J. S. Dugdale, D. Phillips, Proc. R. Soc. A287, 381 (1965).

The most comprehensive work on the electrical resistivities of alkali metals at low tempera-
ture down to 2 K is that of MacDonald et al. [38], but their results for lithium and sodium
refer to two-phase mixtures of unknown proportions. The most accurate work on the
ideal electrical resistivity of alkali metals in the temperature range 2—300 K has been
reported by Dugdale and Gugan [39], and Dugdale and Phillips [40]. Recently, Cook
et al. [41] have presented reliable electrical data for pure free sample of sodium from 40
to 360 K.

It will be noticed from Figs. 1-—5that our calculated resistivity curves are in reasonably
good agreement with experiments except for lithium at low temperatures. However, in
lithium the significance of experimental data at low temperatures is rather doubtful due
to martensitic transformation [42] occurring around 80 K. Similar phase transformation [43]
also occurs in sodium below about 40 K. An overall study of Figs. 1—5 indicates that
for lithium calculations using Giuliano and Ruggeri, and Sharma and Srivastava form
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factors in the DAF and CGW models with experimental K, agree better with observations
at high temperatures, while Bardeen potential provides better agreement in the low temper-
ature region. For theoretical K, in DAF and CGW models, better agreement with ex-
periments in obtained for Heine and Abarenkov, and Sharma and Srivastava model
potentials in the high and intermediate temperature ranges, respectively. In the case of
sodium and potassium, calculations based on Shyu et al. potential lie closer to the experi-
ments for both models. For rubidium, the agreement between theory and experiment
is reasonably good with Lee and Heine and Bortolani and Calandra potentials for experi-
mental K,, while Sharma and Srivastava, Lee and Heine, and Bardeen potentials give
very good results for theoretical K,. In caesium, the form factors of Bardeen is found to
give somewhat better results for both models with experimental K, whereas Giuliano and
Ruggeri potential calculations lie very close to the experiments for theoretical K,. In
general experimental K, in either of model gives higher values of the electrical resistivity
as compared to the theoretical K, throughout the whole temperature range for all alkali
metals. The difference between the results on the two values of K, is maximum for lithium.
On the whole there seems to be satisfactory agreement between theory and experimental
data.

The discrepancies between theory and experiments at higher temperatures can be
attributed to the neglect of various anharmonic contributions. In the present work, we
have not incorporated the temperature variation of elastic constants. This may turn out to
be an important effect because the elastic constants of metals show a marked variation
with temperature. At higher temperatures multiphonon processes begin to operate and the
one-phonon approximation on which the formula (8) is obtained becomes less valid.
Also the phonons vaty with temperature and develop finite lifetime which should be in-
cluded in the theory. One should also take into account the small change in the pseudo-
potential brought about by volume changes through the thermal expansion. Although
these effects are small, they are likely to introduce relatively important changes in the
magnitude of resistivity which depends very sensitively on the shape of phonon spectrum
and form factors. However, it does not seem possible to do a complete calculation taking
into account all the conceivable corrections to the theory.

For lithium and sodium at low temperatures, a phase transformation [42, 43] of
martensitic type occurs which produces a mixture of faulted hcp phase when the sample
is cooled below about 78 K and 37 K respectively. This transformation makes the inter-
pretation of the experimental data somewhat complicated below this temperature. Since
‘the electrical resistivity depends upon the phonon spectrum sensitively at low temperature,
the discrepancies for lithium and sodium may be partly attributed to change in crystal
structure and hence in the phonon spectrum due to martensitic transformation.

It emerges from the present study that the ideal resistivity deduced from Ziman-Baym
formula with modified Sharma and Joshi’s model for the phonon spectrum agrees reason-
ably well with experiments. This proves the adequacy of Ziman-Baym formulation. The
results further show that the magnitude of electrical resistivity is very sensitive to the form
factors of electron-ion pseudopotential. With appropriate selection of pseudopotential
it is possible to get very good agreement with experiments.
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