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Assuming the existence of a definite domain structure, the dispersion relation of long-
-wavelength spin waves in an itinerant electron ferromagnet is calculated in the random phase
approximation. The obtained relation depends, in general, on the magnetization direction
distribution in domain walls. The influence of the magnetocrystalline anisotropy on spin
waves stiffn\ess parameter is also derived.

Elementary excitations in ferromagnets with domain structure were up to now in-
vestigated within the framework of the phenomenological theories [1] or in Heisenberg
model [2]. If we want, however, to consider the situation in metals, where electrons respon-
sible for magnetic effects have itinerant rather than localized character, the band model
approach seems to be the proper one. On the other hand, it has been recently shown by
us [3-6] that the domain structure may be successfully described within the framework
of the band model. Therefore, it is interesting to extend our previous considerations in
such a way that the solution of the problem of spin waves in an itinerant electron ferro-
magnet with domain structure could be achieved. It will be the subject of this paper.

Analogically as in paper [6], the anisotropic Hamiltonian consisting of the Hubbard
and pseudodipolar terms is taken as a starting point, namely
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ias Dis denote creation and annihilation operators of electrons with spin ¢ = { or |
in the Wannier representation at the lattice point Z, and components of the spin operator S;

where b,
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in the second quantization representation are:
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where 8 = +1 for ¢ = 1 or —1 for ¢ = |. Magnetocrystalline anisotropy is introduced
here in a way which seems to be consistent with the Hubbard Hamiltonian, so the model
looks like an entirely uniform one. The difficulty connected with demagnetizing effects
'is avoided by assuming a stray-field-free domain configuration of the Landau-Lifshitz
type. To take into account the presence of the internal part of the assumed domain structure,
Hamiltonian (1) is expressed in terms of new operators c¢;, defined by the relation
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This transformation represents a rotation of the spin operator S; about the Y axis (per-
pendicular to the domain walls) by the angle & measured with respect to the easy axis Z
and dependent on the variable y only. Then the Hamiltonian is approximately diagonalized
by means of a three-dimensional Fourier transformation.
Now, the energy of spin waves in the ferromagnet with the assumed domain structure
may be calculated using the following equation of motion

[H,B,] = hwB,, €))

where the creation operator B; of the spin wave with wave vector g is taken in the form
of a linear combination of one-particle excitations [7]:
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Equation (3)'is solved within the random phase approximation. Next, it is taken into
account that pseudodipolar coupling is small in comparison to the intraatomic Coulomb
interaction between electrons as well as to the bandwidth. The gradual, very slow rotation
of magnetization vector in Bloch walls is also exploited.

Then, the energy of long-wavelength spin waves in a crystal of simple hexagonal
structure is obtained in the following form
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where K is the uniaxial anisotropy constant found in paper [6], 1 denotes the mean sponta-
’ 472
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neous magnetization per atom, sin? 9 = i J sin?8 dy, and 9(y) is the distribution fu nc-
—4/2
tion of magnetization directions in Bloch walls, which was also derived in paper [6]. Here,
A denotes the domain width, ¢, is the Bloch energy, a and ¢ are lattice constants and D,,
D, are pseudodipolar coupling constants. The coefficients ¢, are defined as follows:
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where #n,,, denotes the distribution function of occupation numbers for the Hartree—Fock
one-electron states.

According to Eq. (5), the obtained dispersion relation is in fact quadratic and the
energy gap for ¢ = 0 is connected with anisotropy. However, it should be emphasized
that the influence of the pseudodipolar coupling is not limited only to the shifting of the
energy spectrum by a value proportional to the anisotropy constant (a result well-known
from phenomenological theories [8] as well as from the Heisenberg model [9]) but it causes
also an additional modification of spin wave energy. Namely, the coefficient of g2, itself,
depends on the pseudodipolar coupling parameters and is of anisotropic character.
A similar variation of the spin wave stiffness parameter in the band model, caused by
magnetocrystalline anisofropy was obtained earlier in paper [10].

Moreover, analysis of Eq. (5) shows that the domain structure also influences the
spin wave energy. The coefficient of ¢* depends on the type of domain structure through
the distribution function 3(y) of magnetization directions. This dependence is rather
weak, of course; it is related to the fact that the rotation of magnetization vector in Bloch
walls is very slow.

Considering the obtained result it should be mentioned that no localized spin waves
connected with domain walls were found. First of all, it is a result of our choice of the
Hamiltonian which does not include any demagnetizing effects. Secondly, it could be
eventually connected with the approximate method of diagonalization.

As a conclusion we can state that the spin wave energy in a ferromagnet with domains
depends in general on the domain structure i.e. on the distribution of magnetization direc-
tions in domains considered. This fact has been shown here within the framework of the
band model. It is valid, therefore, for metals in which electrons responsible for magnetism
have an itinerant character.
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