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Using the information about the critical slowing down of the polarization of a hydrogen
bonded ferroelectric, the simplest kinetic equations describing the critical kinetic in so-called
classical region of the phase transition are derived. The restrictions imposed by symmetries
of the KDP are studied. The obtained kinetic equations are less symmetric, exact counter-
parts of the phenomenological Bloch equations. The response functions obtained from the
kinetic equations reveal the existence of the overdamped soft modes.

1. Introduction ‘

It is well-known that the set of equations proposed by Bloch form the basis for the
experimental and theoretical studies of paramagnets. Various examples of the applica-
tions of these equations can be found in the famous book by Abragam (1961). This set
of equations is extensively used for description of other systems, in which one does not
deal with the proper magnetic moments but uses some dichotomic variables. The famous
example is the photon echo in an ensamble of atomic’ systems discussed by Kurnit et al.
(1966). Since the hydrogen-bonded ferroelectrlcs are described in terms of the pseudo-spin
operators, it is tempting to use Bloch equatlons for description of the electric and critical
properties of such ferroelectrics. Such attempts are recently reviewed in the paper by Blinc
and Zeks (1974). They also shown that the response functions, which can be obtained
from Bloch equations, reveal the existence of both the soft modes and the central peak.
These features are observed in experimental studies.

However, it was recently realised that even if one can use the set of Bloch-like equa-
tions, their actual form depends strongly on symmetries of a considered system (cf. Gotze
and Michel (1974)). ' .y

Differently then paramagnets, the most famous example of a hydrogen bonded
ferroelectric — the KDP crystal — possesses lower symmetry (cf. Moore and Williams

* Work supported by the Swiss National Fundations.
** Permanent address: Instytut Fizyki Teoretycznej, Umwersytet Wroclawskl Cybuiskiego 36,
50-205 Wroctaw, Poland.

(799)



800

(1972)). Besides, the interactions between electric dipoles are strongly anisotropic, much
more than in paramagnets.

Additionally, Bloch Equations describe a strongly polarized paramagnet, whereas
in the case of a ferroelectric, one tries to describe the fluctuations of the polarization of
an unpolarized sample.

The purpose of our paper is to study the influence of the peculiarities of KDP crystals
on the form of Bloch Equations. Following Gétze and Michel (1974), we derive the formula
for polarization response function. From this formula we derive the Bloch-like equations,
which are indeed different from those derived by Blinc and Zek§ (1972). They derive
these equations from Bloch Equations valid for paramagnets.

In principle, one can include the influence of other degrees of freedom, such as the
lattice vibrations. This is a trivial task if the lattice is treated as a thermal bath. If part of
the lattice forms an independent subsystem, the problem is more complicated, and the
system is described not only with the help of ’components of pseudospin, but also with
some densities of conserved lattice variables, as in the model proposed by Cowley and
Coombs (1973). For simplicity we will discuss mainly the response to a spatially homo-
geneous field. In such a case the energy flow is not excited by an external field.

2. The response function

Let us consider a system of N particles contained in the volume V. Denote the Hamil-
tonian of this‘system by H. If this system is placed into an external time dependent field
of a strength #(z) it produces the disturbance, which may be represented by addition of
the term

H,() = —B*Z(1) (1)

to the Hamiltonian of the system. B+ is the operator representing the variable coupled to
the external field. Denote the change of the mean value of any variable 4 describing the
considered system, under the influence of an external field by 4<{4)(?). In the approxima-
tion linear in the strength % (¢), the Fourier transform of this change is given by

A4 (0) = y48(— 0)F (). (22)

Thé Fourier transform is defined as

do .
F(1) = — &"F(0)

2n
and the mean value is calculated in thermodynamic limit N — oo, ¥ — oo, N/V = const,
which we will denote by Lim. The actual form of the susceptibility y,5(w) depends on the
condition of the measurements. This fact is formulated with the help of initial (or boundary)
conditions imposed on Liouville’s equation as it was shown by Kalashnikov (1974). In
Kubo’s formulation one considers the response of the system being initially in the contact.
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with the thermal bath, then decoupled from it, and finally disturbed by an external field.
This procedure yields the well-known response function of an isolated system. It is well-
known that in Kubo’s theory of linear response, the static susceptibilities are generally
incorrect. To improve this fault of Kubo’s theory, Kalashnikov (1974) considered the
system being in contact with reservoires. These contacts induce thermal flows in dis-
turbed system, and these flows in turn change the quasi-static response. Flows in a system
are connected with a set of slowly-varying in space and time variables (gross-variables).
Kalashnikov’s results seem to be correct only when one considers the changes of the
mean values of gross-variables under the influence of a field also coupled to a gross-
-variable.
The Kalashnikov formula for the dynamical susceptibility reads

2ap(®) = Y45 +iPoGiF(w), (2b)
where 3 is the inverse temperature of the thermal bath. The proper isothermal static suscep-
tibility is defined in terms of scalar product. For extensive variables 4, B one has
.1
Xap = Lim N2 {4, B).

In Kalashnikov’s theory the scalar product ¢, is defined as Kubo’s correlator

1
{A,By = B [drTr Apy(4B)* 0§ 7, 3)
4]
where
A<{B) = B—~{(B),, (B> = Tr Boo

and g, is the density matrix of the equilibrium state. The scalar product ¢, has the following
properties

(A4, 4> >0, (A4, B> =B+ 4", {4,B>* =<(B, 4> @
and is linear in the first argument. Additionally one has
(4, B = (44, B).

The scalar product allows us to introduce the Hilbert space of variables, which we shall
denote by #. In this Hilbert space, Liouville’s operator ¥ which governs the time evo-
hution

A() = €2°4(0), i¥A4= lih [4, H], &)

is hermitian
(ZA,B) =<4, ZB). (6)
Let us consider a symmetry operation represented by an operator %

#H = U'HU = H.
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With the use of the definition of & one obtains
ULA =U"LPAU = FUTAU = LUA. @)
For % unitary the following relations hold
{UA, UB)Y = (A, By, <(UB), = <{B)y. (8a)
For an antiunitary operator % one gets (cf. Gétze and Michel (1974))
(UA, UB)Y = {A,B)%, <(UB); = {Bom (8b)

where the asterisk denotes a complex conjugation, and H is the time-reversed Hamiltonian.
Let us consider the dynamical part of the response function, connected with the
Fourier transform of the time-dependent Kubo’s correlator. The dynamical part of sus-
ceptibility reads
0

. 1 , ,
BGEM(w) = lir(t)l+LimN3 f dte® ™A, &¥'BY. (9)

Formally integrating one gets
isoth . . 1 . . -1
BGET N (w) = lim Lim NZ (=) {4, (~o+ic—F) "B).
=0+
Introduce the resolvent operator

A(z) = (z— %), 109)
where z is a complex number. Hence one has
. zisoth : Q ) 1 .
iofGLR(t) = o lim Lim Nz (A, #(—w+ie)B). 1
g=0+

Thus, the dynamical part of the response function BGiyr (@) is a matrix element of
the resolvent %(z) for z = —w+ie. Let us consider the properties of the resolvent. The
use of the definition (10) and the formula (5) yields

A(z)BY = —(R(—2z*)B)". (12a)
Due to the hermicity of & one has
{4, #(2)B) = {Z(z*)A4, B). (12b)

Consider now the symmetry operations. For an unitary % commuting with the Liouvillean
Z one has

CUA, R(2)UB = (A, A(z)B. (132)
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For an antiunitary symmetry operation 7 with the representation %(7) one has for any
A and B
C LUA, R(z¥)YUB) = {A, R(2)B)3. ' (13b)

The symmetry relations (8a, b), (13a, b) are very useful, as they reduce the number of
independent elements of the susceptibility tensor.

3. Response function of a ferroelectric of the order-disorder type to an external a.c. electric
Jield

Let us consider a ferroelectric with the Hamiltonian (cf. Blinc and Zek3 (1972),
Williams and Moore (1972)).
N N
H=-TY & Z JR=R)SS, (14

where I' > 0. Since the pseudo-spin operators can be represented by Pauli matrices ¢°
Si=z0 (=123

they obey the spin commutation rules
3 . .
[57’ S{}’] =1 Zl Euﬁyslv&’l,l" (15)
=
The length of the polarization operator of the whole crystal is equal to
N
P=2uY S
. 1=1

where y is the magnitude of the electric dipole moment of the ferroelectric two position
dipole. This vector is parallel to the c-axis of the crystal.

In order to link the abstract pseudospin model to the real substance we ought to
imposethe symmetry properties of the real specimen on the Hamiltonian (14)..

Let us begin with the time-reversal operation 7. This is an antilinear symmetry opera-
tion. We ask for the representation U(T) of T for pseudospins S;. U(T) is an antiunitary
operator. Imposing three obvious physical requirements

- 9T)H =U HU =H, %T)P=P
and condition of preservation of the commutation rules (15), one finds
UT)=K, Kt=Kk, , (16)

where. the action of K is simply to take the complex conjugate of any c-number. Since
the only Pauli matrix with the complex elements is ¢”, one has

KS)K = -8}, I=1,..,N.

Note that
g KZK = %.
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Next we consider the operations of the point symmetry group. The symmetry group
of the paraelectric phase of the KDP crystals is 42d(D}J). The symmetry of the ferro-
electric phase is lower, since it belongs to the point group mm2(C,,). Reasoning in the
same manner as for the time-reversal operation one gets the pseudo-spin representation
of the symmetry operations of KDP: (i) 1, 82, 6, ,_,, 6, , corresponds to the unit matrix,
(i) S4» S, C1ys C,, have the representation

1 0 0
0-1 0
0 0 -1/ a7

Thus only $* does not change the spin under a transformation belonging to the second
group’.
The use of (17) and the independence of the trace on the choice of the basis yields
for the paraelectric phase the exact relation
Yox = (8%, 8% = 0.

This is a well-known result usually derived with the help of equations of motion (cf. Pytte
and Thomas (1968)). For the ferroelectric phase the operations of the second group are
absent and yx,, ‘does not vanish.

Consider a linear change of the polarization (P, under the influence of the spatially
unhomogeneous ac external field of the strength E(x, t). The potential energy of the electric
dipoles in this field is

H,(@ = — I_[d3xP(x)E(x, 0, (18a)
where the operator of the polarization density is defined as
P(x) = ,ZN; 2uSié(x— R)) = 2uS*(x).

Introducing the Fourier transforms of the density of the a-th component of the spin

operator

Si={ d3xe” *xS4(x),
Vv

the disturbance H,(t) (18) may be written as
Hy(1) = — ;PJ E(1). (18b)

From (17) it follows that KS{K = €,5%;, &, = ¢, = 1, &, = —1. Since we are interested
in the linear change of the polarization (P}, we obtain the polarization-polarization
response function

Xon(@> K) = 1K)+ lim Lim ©N ~2(P,, B~ +ig) P). (19)
g—0*

11 am indebted to Dr J. Lorenc for the useful discussion of the symmetry properties of KDP.
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Therefore, in order to find the response function for the considered system, one should
study the matrix element of the resolvent %(z)

D2, k) = <Py, R(2)Py = (21)*CS}, A(2)SP.

Further we shall study the matrix element (S}, Z(z)S5>. Actually, ?,,(z, k) is a matrix
element of the matrix of the dynamical part of the response function.

Let us mention that due to experimentally observed critical slowing down of the
polarization in the vicinity of the critical point, P, in this region is a slowly varying
variable. Therefore one can use Kalashnikov’s formula (2b). In order to get more infor-
mation about the matrix of susceptibilities j(w, k), let us consider, the properties of the
spin Hamiltonian with the transversal field term (14). The second order equation of motion
for P, contains an oscillatory term.

In turn, 9, (—w+ie, k) contains an oscillating part. To select it from an incoherent
fluctuating part, one has to consider additionally the matrix elements of %(z) between S},
and mixed matrix elements.

Now, we will carry out this program. In our considerations we shall follow the paper
by Gotze and Michel (1974). We introduce the projector #. For any variable C one has

OS> . <CSD }
PC = — Sz N 20
Z{@z,sp s sy (202)

From this definition it follows that

P = .
The projector & is a hermitian operator. This follows from (3) and (20a)
(P4, By = {4, #B).
For any unitary or antiunitary symmetry operation % one has
UP = P.

Since S$*(x) is an even variable, and $’(x) is an odd variable under the time reversal,
they are orthogonal, i.e.
{(8%(x), S'(x)> = 0, (21a)

and from (21a) and the definition of the Fourier transform of S%(x) it follows that S}, S}
are orthogonal, too
{S;, S}y = 0. (21b)
Similarly
(S, Se> =0 for T >T. (22)

Below the temperature of the phase transition T, one can select the mean field term.
Similarly as in the case of the transversal field term this suggests that for the ordered
phase one should enlarge the set of gross-variables and add S to {S}, Si}. We stress that
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we shall not use the mean field approximation. Since Sj is orthogonal to S} but not to SZ
one should introduce the new variable X, which is orthogonal to S}

{86 S

X, =8i— —— S} 23
TR s R
For the ordered 'phase the projector £ projects in addition any variable C on X,
C S; C, Sy ‘C, X
e TED e SR a0 om
B < ko k> < ) k> <Xk> Xk>

In the present problem £ is the projector on two or three dimensional subspace # , = PH#
spanned by {Si, S;} or {Si, Si, X,}, respectively. Let us denote the projector on the
orthogonal complement J#, = #2 by 2. The projectors & and 2 fulfil the obvious
relations

P =P =2, 9°=9=29", 9+P =1, PI=29% =0.

Using these formulas one can derive the following formal equation discussed in papers
by Lanz and Lugiato (1969) and G&tze and Michel (1974).

(2P —PLP —~PLIRN2) DL P|PR(2)P = P, (24)
where
R 2) = (2=L )",
and
Ly=3%9
is the reduction of & on the subspace # ,. Introduce the matrix @(z, k) with the elqments
Dop(z, k) = Af, R(2)AL. (25a)

For the paraelectric phase (7 > T,) Ay = SZ, A2 = S]. For the ferroelectric phase
(T<T)AL=Si Ai = S}, A} = X,. The matrix & has the following property

&7 (z, k) = B(z*, k). (262)

This follows from (4) and (12a, b). Using Eq. (24) one obtains for the matrix é(z, k)
the representation derived by Gétze and Michel (1974)

P,(2, k) = 62‘:‘ Lo () ([2* 7(0) — (R + m(2, K)]™ V)50, (K), 27
where j(k) is a matrix with the elements <A}, A}>. The matrix. (k) is hermitian
wop(k) = (Af LA = wp (k). (28)
The last matrix m(z, k) is defined in the subspace #,
Mz, k) = —(AL AL, R(2)AL AL (25b)



807

Since is has the same structure as &(z, k) it fulfils

m*(z, k) = m(z*, k). (26b)
Denote
m(w, k) = lim Lim N " *m(w+ i¢, k).
=0+
One has

m(w, k) = m'(w, k)—im" (o, k), (28a)
where from (26b) and (28a)
myp' (0, k) = my(w, k),  mgg(o, k) = mp(w, k). (28b, ¢)

The matrix m'(w, k) is positive.
From the definition (25a) and (4) it follows that

¢;kﬂ(zs k) = _‘éaﬁ(— Z*a —k)
and similarly from (25b)
mfﬂ(z, k) = —mye(—2z%, —k). (29)

Using the identity
1
<$A: B> = X <[B+a A]>07

one obtains the (k) matrix.
As' usually, that matrix of restoring forces Q(k) is defined as
Q(k) = (Lim N-2o(k)7~ (k).

For the ferroelectric phase one has

[0 iQ, 0
=4 — _ Xy ! B
G = | =i0, s 0 10,0 | (30)
0 _igsi 2% o
. Xy o
where
| -1 -1,z sz(k)Xy
Q, =Th, Q,(k) = (hys33(k) N7 (So>ot rj,
' x11(k)

(S0 = {Sk=0> = {80, (x=x,y,2),
Xfx(k) = sz(_k)
hence y,, (k) is real for |k| = 0.
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In derivation of Eq. (30) we accounted for an exact relation

(St Sy = <S 2

Pytte and Thomas (1968) have found the critical behaviour of susceptibilities in the mean
field approximation. The polarization-polarization susceptibility is divergent in both
phases, ., is divergent in the ferroelectric phase only. The susceptibilities x,, = x,, ¥.x
are regular in the whole temperature range. Since

Lim (N™(X,, X,) = Lim (N~ XS5, S5)—Lim (N"?<S5, S 1S5 Sp)  (31)

the susceptibility ys; is regular, too.
For the paraelectric phase the matrix of restoring forces ((k) is much simpler

(k) ( ° igl} (32)
i@ o

Consider the characteristic frequencies. For the ferroelectric phase, one of them equals
ZEero

)vl = 0’
and two others 4,, 1; are equal
Ay a(k) = £ [QT1x11(R)+12:(K)*235(RK)x5 1] (332)
The eigenfrequencies A,, A; are soft. This is due to
{Si>o — 0 and y;(k) > oo for [k] >0 and T —» T,

In the spin space the motion corresponding to the eigenvalue A; = 0 occur in the plane
perpendicular to 42. The eigenfrequencies for the paraelectric phase are soft too

k) = Qyyxii(k), (33b)
hence, for small |k| from the results of Patte and Thomas (1968) it follows that
(S0

N

Ak) ~ Qirt Lim( )[ ak*+b,(T-T)] for T - TS .

The resolvent m(z, k) is the mass operator for the pseudospin waves. It is a quantity
of the same type as &(z, k) but defined in the subspace #,. If this subspace contains
only quickly changing variables, one can expect that m(w, k) is an -analytic function of |k|
and w. In such a case it is a good candidate for approximations. If s, contains another
slowly varying variable (e.g. energy density) one should further enlarge the set of variables.

Consider the “mass operator” mf(z, k) for a simpler case of the paraelectric phase.
Since 2.%S; = 0 the m(z, k) matrix has only one nonvanishing element m,.(z, k). The
use of Eq. (19) and the thermodynamical limit of (27) yieds

— 2,03

Xpp(@, k) = — - 34a
i wz_ m22(7w+w, k) _ Xy 2 ( )

Xy x11(F) .
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Since m’,(w, k) is an odd function of the frequency w and m, ,(w, k) is an even function
of frequency, and both are even functions of the wave vector k (cf. (35b, ¢, d)) our formula
gives for small  the generalization of the phenomenological formula derived by Blinc
and Zeks (1972). Let us mention that their formulas correspond to our y,,(—, k).
A generalization consists in the renormalization effects — the change ‘of the height of the
peak of the absorptive part of the susceptibility and the shift of eigenfrequencies.

* From the formula (34a) ‘it follows that in the paraelectric phase there exist two
overdamped soft modes. Since the projection method yields a formula for damping in
the form of the Fourier transform of the time and space dependent correlation function,
that shows advantages of the projection method. Contrary to the phenomenological
formula, this correlation function can be studied further. For example, one can use the
mode-mode coupling approximation.

In particular we expect that such calculations could discriminate between existing
models of KDP.

To show the power of the method let us consider the coupling to the heat conduction
in the paraelectric phase. Introduce the energy density

H(x) = —I'S*(x)—% [ d*yJ(x— y)S(x)S*(p).
1| 4
The Fourier transform reads

1 N QzZ Q2
Hk = -—FSi-—- 2_V J(k )SkSk_k'.
g

Let #4 be the projector on H,
gHA . ; <A7 Hk> <Hka Hk>—1Hk’

2y = 1—Py projects on the orthogonal complement #,,.. One can write
. my2(2, K) = —{(Pu+20)2L S}, Ao(2) (P + 20) 2 Sp)-

Since S} is odd and H, is even variable under the time reversal 7, the only nonvanishing
element of m,, is

| Mz, k) = —{25 2L}, R o(2)24 2L S

This means that m,,(z, k) does not exhibit the diffusion pole. In the paraelectric phase
and in linear approximation the heat diffusion does not influence the polarization. This
shows that the central peak discovered in the paraelectric phase has different origin than

the coupling to the heat conductivity.
Consider the matrix m(z, k) for the ferroelectric phase. All matrix elements

my(z, k), m,,(z, k) (@ = 1, 2, 3) are equal zero. Now we will study the symmetry prop-
erties .of the nonvanishing elements. Using (26b), (29) and (13b), which for our case
reads

mf,,(z*, k) = ggpmyy(z, —k),
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and also (28a) for the case z = w+ie, we obtain the set of equations connecting non-
vanishing matrix elements. The diagonal matrix elements are real

moi(w, k) = my(o, k),
M (0, k) = my(o, k). (35a)

For w — 0 the only nonvanishing diagonal matrix element is mi,,. This follows from

Mmy(—w, k) = —my(w, k), (35b)
mi(— o, k) = mi(w, B) | (350)
Besides, the diagonal elements are even functions of k

Mm@, —k) = my(0, k),  myo, —k) = m (o, k). (35d)

For off-diagonal elements relations (35b, c) have opposite signs
mys(— o, k) = mys(w, k),  myx(—w, k) = —mys(w, k). (35¢)

The matrix elements m55, my; obey additionally two conditions
m53(, k) = myy(w, k), my3(w, k) = —mi(w, k), (35f)
mys(o, —k) = "‘méz(w, k), mi(w, —k) = —m3)(w, k). (35g)

Hence, for |k| = 0, m}; is purely imaginary: m},(w) = iy(w). From Jacobi’s criterion of
positiveness of a hermitian matrix it follows that in the case of the paraelectric phase
myy(w, k) > 0. ‘

For the ferroelectric phase, mj,(w, k)+my3(w, k) >0 and m},(w, kymys(w, k)
— |mya(w, k)|* > 0, therefore for |k| — 0 we get weaker conditions

my, (@) >0, mys(w) > 0.
In the same manner as for the paraelectric phase, we find the response function
(2w’
Xy

’ m
wf(—w+ —~—33)
X33

N — S — — = —_— (34b)
( mzz)( ’”33) [iw, 4 m 5 wy ( m33)
oto— —}jlo—- | - - W w— ——
Xy X33 X33Xy Ly N X33

L=x(K)
%z(K)N

pr((/), k) .

where

@, = (Nh) S50, wy(k) = k™1 (N_1<Sf)>o+ <Sg>o) .

Since the formula (34a) is rather complicated, we have dropped the arguments of the
correlators. They are (—w) and k. From this formula it follows that m,; renormalizes
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the frequency ,, for small @ and |k| — 0. Besides, the real parts of m,, and imaginary
one of m,; change the height of the peak of the adsorptive part of susceptibility y,,(w).
Since the relaxation times 7'y, T, connected with the imaginary parts of m,,, ms3, respec-
tively, are in the simplest approximation the adjustable parameters, we can absorb any
renormalization factors into their definitions. '

4. Bloch equations describing a ferroelectric of the order-disorder. type

It is well-known that having the response function one can derive from it the Generalized
Bloch equations. In the frame of Kubo’s method the general derivation was given by Gétze
and Michel (1974). Since the Bloch equations form the basis for the description of various
experiments, we shall derive them for a ferroelectric of the order-disorder type.

Let us consider a slightly more general case of several external fields & KO
(y =1,2,...5). In such a case

H () = — Z B} (9.

This disturbance changes the equilibrium mean values of the variables A,(x = 1, ..., n).
In the linear approximation in the strengths &, the Fourier transform of these changes
are equal (cf. (2a))

hm N— 1A<Aac> (CU) = ; Xazy(_w) (Z_ 1)}16%6;1?”(('0)5 (221)
i 7,01
where

K@) = ;'(av—l- lim Lim N _dejav( —w+ig).
g—0*

Let us introduce the Fourier transform of the memory kernel
M(w) = m(w)i.

Using the formula (27) in the-thermodynamic limit, one can write J(w)§™* as

Wit = [0l -8+ M(— o) [~ 3+ M(-)].
Now (2a) can be rewritten in the following form

o Lim N7 44D (0) = G6{A> (0)— M(0)5{A) (w), (36)

where 0¢{A4 M) is a column matrix with the a-th element equal to

54, () = Lim N™'ACA) (@)= Y. 17 (o).

7

The Fourier transform of Eq. (36) gives the Generalized Bloch Equation with an allowance
of the memory effects. The discussion of these equations can be found, for example, in
the paper by Go6tze and Michel (1974). Generally 4<{4,>(t) relaxes to some local-

-equilibrium value, which depends on the initial conditions imposed on Liouville’s
equation.
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Let us return to our special case of a hydrogen-bonded ferroelectric. The paraelectric
phase is described with the help of two Bloch-like equations. In the case of a disturbance
homogeneous in space |k| = 0 one obtains for the Fourier transform of Eq. (36)

d
<Py () = =225 (1), (37a)
d 1
S (1) = = 2 (D+2, L APy (0— () Qu,E(D.  (37b)
2 11

For simplicity in these equations we have neglected all renormalization effects connected
with the higher order terms of the Taylor expansion of M,,(w) in w, i.e. we have taken

llm Mzz(ﬂ)) = —'iTZ_l, (T2 > 0)

w—0

In a similar approximation; the set of equations for the ferroelectric phase reads

d
E<P°> (0 = —2,2u{Sy) (1), (38a)
d Ay | Az o 1
—2u{Se) (1) = [91 — + 92] APy ()= = 2ulSt> (D
dt X11 X11 T,
—Q52ulS5> (1) —_(211)291XyE(t), (38b)
d
= 2S5y () = 2 AP (- [9 4= Sl "—] 2u(S3 (1)
dt X111} X11 Xy
1
T 2p4<Sg) (1), (38¢)
1

where in the lowest approximation

hm M33(w) = —iTl_l, (Tl > 0)

©-0

lim my3(w)/xss = iy,

w-0
and
Q, = (Q,—7).

Both sets are different from the well-known set of Bloch equations for a paramagnet.
The difference is due to both the high anisotropy and low symmetry of the considered
system.

Our sets are different also from those derived by Blinc and Zek$ (1972). They start
with the set of equations for less pathological system and then tried to lower the symmetries
of this set. Since S is not a thermodynamic variable in the paraelectric phase, there are
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only two equations for the paraelectric phase. In spite of this difference, for the paraelectric
phase and for small wave-vectors and frequencies, the response function in both ap-
proaches is the same. This is due to the fact that for a paramagnet the equations for the
transversal components are decoupled from the equations for longitudinal, one. The sets
(37) and (38) should be used for description of various experiments which can be
carried out on the hydrogen bonded ferroelectrics.

5. Summary and final remarks

Let us summarize our results. The critical slowing down of the polarization indicates
that in the .vinicity of phase transition P is the thermodynamic variable. In order to
separate the systematic oscillations from uncoherent fluctuations we should additionally
use other pseudo-spin components.

Of course, this is the simplest choice of the set of thermodynamic variables describing
the dynamics of critical fluctuations, valid in the so called classical region of the phase
transition. In the paraelectric phase, the limit from above corresponds to the region, where
the critical slowing down is fully developed, the lower limit can be obtained from Ginzburg
criterion. This criterion gives also the upper limit for the ferroelectric phase. In the really
critical region the linear response approximation is not valid. Since we are looking for the
response of thermodynamic variable under influence of the field coupled to the same thermo-
dynamic variable, we can use the Kalashnikov theory (1974). Hence, our response functions
have the correct static limit. The study of the laws of transformation of the components
of pseudospin operators under the symmetry operations considerably simplifies. the
response functions. In particular, we have shown exactly that in the paraelectric phase
an unhomogeneous electric field does not induce the heat flow. Since in the discussed
temperature regions the mass operators are defined in the subspace of the Hilbert space
of variables 5#,, we can treat them as regular function of w and k. In this manner we
can introduce the relaxation times 7%, 7, and the frequency shift,

They are given in the form of correlation functions, and could be studied further.
This possibility is very interesting for the paraelectric phase, since one can use the mode-
-mode coupling with really few variables. The comparison of the result of calculations
with experimental results could discriminate between various models of the critical dynamics
of KDP (Blinc and Zek§ (1972); Cowley and Coombs (1973)).

For the ferroelectric phase one should study the pseudospin waves.

From the response functions we derived two sets of Bloch-like equations. For simplicity,
we considered only the case of an homogeneous electric field. Then, one can drop the
density of energy, and we deal in the ferroelectric case, with the set of three equations
only. Our equations are not more complicated than these given by Blinc and Zek§ (1972).
The equations for paraelectric phase are so simple, that it is possible to solve them in
quadratures. Hence, one can study the possibility of various experiments.

The Fourier transforms of sesceptibilities correspond to the continuous waves method.
It is well known that such a Fourier analysis can be done with the help of a single experiment
with pulses of field. Thus, one can study the “free induction” experiments, or experiments
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with several pulses of the electric field. This last type of experiments could be interesting,
since they could give the “pseudospin echoes”.

But since the direction of polarization is fixed, this possibility is hypothetical one.
However, in fac‘:t some experiments with the sequence of pulses of microwaves were per-
formed by Frenois et al. (1976). They attribute the existence of echoes to the deformation
field of the lattice (piezoelectric coupling).

We hope to return to these problems in future.

The author is grateful to Professor A. Thellung and other members of the Institute
of Theoretical Physics of Ziirich University for the kind hospitality during his stay. He
also wishes to thank Professor R. Blinc for his interest in this work, Dr. B. Zek$ and Pro-
fessor H. Thomas for enlightening discussions.

Note added in proof:

The symmetry propertes (18) follow also from the genernl invariance of the Hamil-
tonian (14) under the n-rotation in the spin space about the x axis

einSoxHe—inSo" — H,

N
hence the operator H S7 is the constants of motion. This rotation changes the sign

i=1
of S7 and S? but not Si. The average (S, for T < T, should be understood as the
quasi-average. The formula (34a) suplemented by the terms connected with the coupling
to the optical mode does fit the experimental data of Lagakos and Cummins (Phys. Rev.
B10, 1063 (1974)) much better than the expression derived by Blinc and Zek$ (E.
Courtens, private information).
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