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Propagation .of a weak MHD discontinuity in an optically thick medium of an elec-
trically conducting gas has been studied. The thermal radiation effects on the growth and decay
of the wave during propagation have been investigated. A fundamental differential equation
governing the growth and decay of the discontinuity is obtained and solved for a plane wave
front. Tt is concluded that if the discontinuity is a compressive wave of order 1, it terminates
into a shock wave after a finite critical time #., provided that the initial amplitude exceeds
a critical value. If the initial discontinuity is an expansive wave, it will decay monotonically
and will be damped out ultimately. The effects of thermal radiation and magnetic field
accelerate the decaying process. A critical state is also discussed when the compressive wave
will either grow or decay.

1. Introduction

Thomas [1] studied the growth-and decay of sonic discontinuities in ordinary gases.
Biirger [2] studied relaxation effects on acceleration waves in. non-equilibrium flows of
chemically reacting gases. Varley and Rogers [3] studied the high frequency finite accel-
eration pulses in visco-elastic materials. The effects of diffusion on the growth and decay
of acceleration waves were studied by Bowen and Chen [4]. The object of the present paper
is to study the propagation of acceleration waves in radiative magnetogasdynamics.

Let the wave surface 2(¢) be given by

fixt, x%, %%, 1)

where x’ are the cartesian coordinates of a point of the surface Z(¢) and ¢ is time. Since f
represents a wave front, we have
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where 6/6¢ denotes the material derivative as apparent to an observer moving with the wave
front. G is the speed of propagation of the wave along the normal direction and n, are
the components of the unit normal vector to the wave surface X(¢). In order to study the
propagation of the wave front we use a theory of ray optics which is analogous to that
of geometrical optics (Luneberg [5]). If ¥; denote components of the ray velocity, we have

d,x; oG ;
Vi= dt = Gni‘*‘(aij"'ninj)’a’;’; > (1.3)
dn; oG
== 2, «_5-~ . Py 1'4
2 = (mni=d:) o, (1.4)

where dr/dt is the operator of the material derivative along a ray and J,, is the Kronecker
delta. '

The geometrical and kinematical compatibility conditions for a singular surface of
order one are (Thomas [6])

oz
- [2,] = Bn i —GB, 1.5)

where Z stands for any of the flow variables and B is a scalar function defined over Z(0)
by B = [Z’i]ni-,

2. Basic equations

The system of fundamental differential equations of radiative magnetogasdynamics are

i)
it +u;0,+0u;; =0, 2.1
ot
Ou; N
@ i +Qujui,j +pi+p;+uoH;H;;—poH;H; ; =0, (2:2)
Ji = ﬂoeiijk’j, JZ = JiJi, (2.3)
3 tf“.‘iiar i :1
"a—t +u1Hl,J +H,uJ,J—HJuw— ?._Eu Hl,_[] = 0, (2.4)
1 3\ 4T N
—— oR+4axT" )| — +(p+4p )u;;
A\v—I dt
J?
+uouwHy(H; ;—H;;) = F + (Kt T0),55 (2.5

where p, T, H,, J;, u;, 0 and & respectively denote the pressure, the temperature, the magnetic
field components, the current density components, the gas velocity components, the
density and the eléctrical .conductivity. A comma followed by an index (say i) denotes
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the partial differentiation with respect to a. coordinate x;. EX and p® are the radiant
ion energy density and radiation pressure, respectively.

We assume that the discontinuity surface Z(¢) is such that the magnetic field with its
first derivatives and all the other flow parameters themselves are continuous across X(¢),
but the second derivatives of the magnetic field and the gradients of the flow variables
are discontinuous across it. This implies that

[p] = [o] = [w] = [T] = [H] = [H;;] = 0, (2.6)

where [Z] denotes the jump in the quantity enclosed.

3. Growth equation

The law of conservation of energy across a discontinuity surface implies that

v p H Pt
01(up—G) l:”#‘ = +uo— +3ul+d4 — | —[KeTilm
v—1lg 0 0

o
+ 5 [H(H,;—H;)]n; =0

which in view of (2.6) reduces to
[’I:i]ni = 0 (3.1)

Now taking jumps in equations (2.1), (2.3), (2.4) and making use of equations (1.5) and
(3.1), we obtain

(un i G)C + 'Q/lini = 03 (32)
o(u,—G)ly+pn; = 0, 3.3)

g = Guo(H;A,—H,1,), : (34
where '
A= uidn;,  C=Tledn, w=1[pdn, &= [Hplnm.
The equation of state for a polytropic gas model proyides us with the relation
= agl, (3.5)

where q, is the isothermal speed of sound.
Multiplying (3.3) by n;, summing for i and substituting for u from (3.5), we get

o(u,—G)A, + a3l = 0. (3.6)
From (3.2), (3.3) and (3.6) we obtain

{(u,—G)* — a3} = 0. 3.7
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The assumption that Z(¢) is a discontinuity surface of order 1 implies that { 5 0.
Hence we get

G = u,+a,. (3.8)
From (3.2), (3:3) and (3.4) we get
Ay =yn;, [ = (olag)y, & = GucH(,—1In)y,

“where v is the amplitude of the wave and /; are components of the unit vector in the direction
of the magnetic field.
Differentiating (2.1) and (2.2) with respect to x;, multiplying by n, and taking jumps
with the help of the second order compatibility conditions of Thomas [6] we obtain

P L
(elao) (g +u“w,a) = —25 v +20y80n;+ G — oA, (3.9
- 0
5w o K} 4 Eprs —72 2
on; 5t tu'y, ) = gacdini—% agT ¢ —0Gbo(1—1)yn,
+ 06bol,(L;—1,ny), (3.10)

where
jvi = [“i,jk]nj"ka = [P,jk]”j”ks {= Lo, jin;n

and Q is the mean curvature of Z(f)and b3 = pH?/o. Here Greek indices denote components
of the surface tensor and the latin indices denote components of space tensors.
Taking jump in (2.5) and using compatibility conditions we get

p+4p®
Keff

[T,ii] = v, (3.11)

where K is the coefficient of effective conductivity due to heat convection and thermal
radiation. Differentiating the equation of state successively with respect to x; and x; and
taking jump we obtain

i = ail+ — Y. (3.12)

Using (3.12) in (3.10) we get

_ , oy _
0GA—adl = oo (37 +u w,a) —06b3(1—12)y

R(p+4p® Aag T*(p+4p®
+ bl m—ty+ ELEED | SaT (PXEE)
eff

(3.13)
Keff

i
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Eliminating { and ; from (3.9) and (3.13) we get

)
5_? +utyp + By +y® =0, (3.14)

where

R(p+4p®)  2axT(p+4p" _
o (p-+4p ) = 7(1) 1_’_) +1 &b sin® 0—a,Q.
2Keff ' 3Keff
Here 0 is the angle between the magnetic field and the direction of wave propagation.
JIf F is any quantity defined over X(¢), its time derivative along the ray is given by

aF _oF +V,F (3.15)
da ot ) :
Using (3.8) and (1.3) in (3.15) we get
i ~ d,F - OF
4 = “F ,. 3.16
dt ot Tl (3.16)

Substituting from (3.16) in (3.14)- we. get

d, .
Y Byt =0, (3.17)
dt
Now we consider the case of a plane wave front 2(¢) for which @ = 0. Due to planar
symmetry the ray direction coincides with the direction of propagation of the wave and
hence we have

dyy dy
=G—, 3.18
dt do ( )

where ¢ is the distance traversed by the wave front such that ¢ = 0 at ¢ = 0. Using (3.18)
in (3.17) and integrating we get

LA LT ;, (3.19)
b [exp (o16)+ =2 (exp (Bo1G)~ 1)]

where vy, is the initial amplitude of the wave. When o 18 positive, Z(¢) is an expansion
wave front which goes on decaying and ultimately damps out. On the other hand when y,
is negative the wave front (¢) represents a compressive wave which terminates into a shock
wave after a finite critical time 7, given by

1 lwol }
t,=to+ — log{ "
°7 BG 7 ol + B
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4. Conclusions

When v, is negative, i.e. the initial discontinuity with strength u, is a compressive
wave and has the same numerical value as that of § then the discontinuity will perpetuate.
If 1, is negative but less than f then a compressive wave will also decay and will vanish
ultimately. If v, is negative but numerically greater than g then the characteristics will
pile up at the wave front to form a shock wave at the instant z.. The thermal radiation and
magnetic field effects will accelerate the decaying process of the wave. In the case of termi-
nation into a shock wave the thermal radiation eifects will increase the critical time ¢,
for the formation of a shock wave.
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