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ATOMIC POTENTIAL ENERGY DISTRIBUTION FOR
POLYATOMIC MOLECULES

By K. RaMASWAMY AND G. KRISHNA PRASAD
Department of Physics, Annamalai University, Annamalainagar*
( Received August 19, 1977)

Atomic potential energy distributions for .different normal vibrations. of some XY,
XY., XYZ and XYZ, type molecules have been calculated by the method of Kyong. It is
found that for the normal vibration of a specific chromophoric group, the atomic potential
energy distribution remains the same. As such this property can also be used as a parameter
in the study of molecular vibration.

1. Introduction

The customary method used in the theoretical computation of a potential energy
distribution is the one suggested by Morino and Kuchitsu [1] using the relation

_ F iiink

X.
ik Ak

, 1
where X, is the potential energy distribution of the i symmetry coordinate to the k®
normal mode, L is the ik'® element of the L matrix and A, = 4n2c?v;. In this method,
the distribution of potential energy is obtained with respect to the symmetry coordinate
as a whole. In the present investigation, the potential energy distribution is obtained for
each atom by the method of Kyong [2].

2. Theoretical consideration
The well known secular equation for molecular vibration is [3]
GFL = LA, @

where G is the inverse kinetic energy matrix, F is the potential energy matrix, 4 is the
diagonal matrix of vibrational eigen values with elements 4, = An2c2y? (c is the velocity
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of light in vacuum and v, is the vibrational wave number of the k™ mode) and L is the
eigen vector matrix satisfying the normalising condition

LL =G. 3)
From the equation (2) it is easy to arrive at the relation

'IGFL 4 . @

matrix G can be written in terms of masses- of atoms and the geometry of the system
exclusively as follows [4]:

R
G = ‘Zl I,liHi, (5)

where p; is the reciprocal mass of the /™ atom, H is a matrix which is solely dependent
on the structural geometry of the molecule and N is the number of atoms in the
molecule.

 Incorporating equation (5) in the relation (4) we get

wL ™ HFL = A, (6)

Mz

i=1

which after simple mathematical manipulation leads to
]"aﬁ lH aF L;

g
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where L; and L7 ! are the j* column and j® row of the matrices I, and L respectively
and subscript a stands for the atom under consideration.

3. Results and discussion

The procedure given above has been applied to determine the atomic potential energy
distributions in various molecules. In simple molecules of the types XY, and XY,, the
characteristic distribution is self evident. In the case of X Y, type [CCl,, SiCl,, GeCl,],
Ramaswamy and Chandrasekaran [5] have observed that Sp® hybridization of orbitals
plays a predominant part in forming the covalent bonding but the strength of the bond
decreases as one goes from c to higher members because of the intrusion of d orbitals
and the electrons get loosely -bounded which in turn leads to a decrease in the values of
force constants. This fact is clearly exhibited in the variation of the atomic potentlal
energy distribution of these molecule (see Table). For CO X, (X = halogen) molecules
the atomic potential energy distribution, corresponding to the vc.o vibration, among
the atoms C and O is the same throughout irrespective of the halogen group. This is
quite remarkable and can be attributed to (i) the constancy of the C-O stretching force
constant within the series of carbonyl halides and (i) the C-O bond length being roughly
same in carbonyl halides. In XCN (X = Cl, Br, I) type molecules whereas the atomic
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TABLE 1
Atomic Potential Energy Distribution for different vibrations of some XY,, XY3, XYZ and XYZ, type
e r{lolecules
Nature Frequency Atomic PED
RS S of vibration (em™) | x |y | z
ca C-Cl stretch L 789 0.79 0.21 {
4 | CLC-Cl bend 320 0.89 0.11
sicl | Si-Cl stretch 619 062 | 038
14 Cl-Si-Cl bend 221 0.78 0.22
Ge-Cl] stretch 453 039 | 061
XY, GeCls Cl-Ge-Cl bend 172 0.55 0.45
ol C-H stretch 3019 0.10 t 0.90
4 H-C-H bend 1306 0.18 | 082
f - Si-H stretch 2189 004 | 096 .
e SiH. H-Si-H bend 913 009 | 091
! " Ge-H stretch 2111 0.02 0.98
GeH, H-Ge-H bend 820 0.04 0.96
N-H stretch 3506 | 0.03 0.97
H-N-H bend 1022 0.27 0.73
NH, N-H stretch L3577 009 | 091
. H-N-H bend 1691 0.06 0.94
|
As-H stretch 2209 | 001 0.99
| H-As-H bend 973 0.04 ‘ 0.96
] | As-H stretch 2225 0.01 0.99
XY, AsH, H-As-H bend 1012 0.01 0.99
! P-H stretch 2448 0.03 0.97
| H-P-H-bend 1045 0.06 0.94
PHs | p.H stretch 2390 0.03 0.97
H-P-H bend 1153 0.02 0.98
C-Cl stretch 744 0.18 0.54 0.28
CICN C-N stretch 215 054 | 046
C-Br stretch 587 0.09 0.60 0.31
XYz BrCN C-N stretch 2198 | 0.54 0.46
C-I stretch 461 0.06 0.62 0.32
ICN C-N stretch 2167 0.54 0.46
C-0 stretch 1830 0.57 0.43
‘ Ccodl, C-Cl stretch 574 0.65 0.35
Cl-C-Cl bend 303 0.80 | 0.20
‘ C-O stretch 1828 0.57 0.43
XYZ, |  COBr, C-Br stretch 425 0.82 0.18
Br-C-Br bend 181 0.90 ‘ 0.10
1
C-O stretch 1946 057 | 043
COF, C-F stretch . 973 0.52 ’ 1 0.48
| F-C-F bend 538 0.67 0.33
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potential energy distribution for C and N atoms in the C-N stretching vibration is the
same for all the molecules, the contribution towards the halogen atoms decreases in the
C-X stretch as the electronegativity increases. This is reflected in the decrease in the
values of force constants as electronegativity increases.

One of the authors (G. K. P.) is thankful to the University Grants Commission for
financial assistance in the form of Junior Research Fellowship.
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Quantum-mechanical formulae for the magneto-electric susceptibility fifth-rank
tensor are derived, providing the basis for first numerical calculations of contributions from
these susceptibilities to non-linear variations in Faraday effect in atomic systems. The calcula-
tions predict that the laser intensity dependence of the Verdet constant is -accessible to
-experimental measurement. In particular, for-inert gases the Verdet constant can vary by
as much as 40 per cent in light wave fields of E & 107 V/cm. For atomic hydrogen, the varia-
tion amounts to 20 per cent in a field of E = 5x10° V/em at a resonance mxstunmg of
30 cm™.

1. Introduction

The powerful sources of laser radiation now available permit the investigation, in
addition to classical electro- and magneto-optical effects, of a variety of novel non-linear
phenomena involving changes in the polarisational characteristics of radiation, propagating
in non-linear media. Moreover, in the field of an intense light wave, intensity-dependent
corrections to the Kerr, Faraday, Cotton-Mouton and other classical effects can become
essential. The semi-macroscopic theory of the influence of intense laser fields on these
effects has been developed in Refs [1-3]. Hitherto, however, no consequently quantum
mechanical calculations of the relevant non-linear susceptibility tensors or their numerical
values for specific non-linear media have been performed. Since the non-linear corrections
are given by fifth- and higher-rank tensors and are essentially depenndent on the radiation
wavelength, approximate evaluations can prove rough thus making difficult the assess-
ment of the magnitude of the eﬂ‘ects to be expected as well as of the feasibility of their
.observation in’ experiment. :

*Permanent address: Voronezh State University, 394063 Voronezh, USSR.
** Address: Voronezh State University, 394063 Voronezh, USSR.
*#% Address: Zaklad Optyki Nieliniowej, Instytut Fizyki, Uniwersytet A. Mickiewicza,
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In this paper, quantum mechanical expressions are derived for the non-linear correc-
tions to Faraday’s effect in an intense light field, and results of numerical computations
of the respective quantities for atomic gases are given. The choice of the latter as non-
-linear media was determined by the following two circumstances: Firstly, correct quantum
mechanical calculations of non-linear suceptibilities are, at present, feasible for gases
only, and secondly, from the experimental viewpoint, rarefied diamagnetic atomic gases
are the best adapted to accurate measurements of the purely electron non-linearities of
the medium defined by the higher-order non-linear susceptibilities of the atom. The latter
circumstance is due to the absence, in diamagnetic gases, of the temperature-dependent
terms proportional to products of susceptibilities of lower orders which, in the case of
most molecules and liquids, screen the effects due to electronic non-linearities of higher
orders. The smallness of the non-linear coefficients of atoms by comparison with other
non-linear media can be partly compensated by the use of highly intense incident ra-
diation. Thus, e. g. in the case of inert gases the breakdown voltage is E, ~ 5x 107 V/cm,
admitting of the use in experiments of the focussed radiation of pulse solid-state lasers.

2. Theoretical background

The variation in polarisational characteristics of radiation propagating in a medium
is determined by the anisotropy of the refractive index n(w). Such anisotropy can result
from the intrinsic properties of the medium (natural activity) and can be induced by an
external electromagnetic field. The change in refractive index due to the action of a field
can be expressed in terms of the electric and magnetic polarization induced in the medium
[2]. We shall be considering a rarefied gas, of volume ¥ containing N atoms, isotropic
in the absence of external fields. In a static magnetic field H and that of a monochromatic
wave with electric vector E(r) = Re(E(w)e ), its refractive index is determined by the
component of electric dipole polarisation vector P(¢) at the frequency o which, with
accuracy up to terms of order 4 in E and H inclusively, can be written in the following
form!: ’

P() = Re (P(w)e™ ™),
Piw) = 2ij(—; @E{0)+ xiu( — 0; ©, 0)E (w)H(0)
+ xiju(—0; 0, —0, ®)E j(co)E,’f (0)Ef@)+ y;ju(—w; @, 0, 0)E {w)H(0)H ,(0)
+ Yijum(— 03 @, — @, @, 0)E (0)Ef(0)E(w)H,,(0)
+ Xijam(— @3 @, 0, 0, 0)E () H,(0)H (0)H,,(0) + ... ¢

The susceptibilities x describe various processes of interaction between the wave and_
the atoms, as well as Rayleigh light scattering (not affecting the spectral composition
of the radiation), and changes in the polarisational parameters of the light wave propaga-

! We take into consideration electric dipolar interaction between the system and wave only, since
in atomic gases the contribution from magnetic and higher multipolar terms is usually negligible {1, 2].



739

ting in the gas. In particular, the first two terms of (1) define the linear Faraday effect.
The general structure of the tensors x;; and y;; as well as numerical calculations for some
atoms are given in Ref. [4]. Next, y;p(—@; 0, —o, ) is the hypersusceptibility tensor,
calculated for atomic gases and related with the constants of the optical Kerr effect and
self-induced rotation of the polarisation ellipse in Refs [5, 6]. Moreover, Ref. [5] contains
calculations of x;;(—®; , 0, 0), the tensor describing the Cotton-Mouton effect. Whereas
the last two terms of (1) are corrections, non-linear in E and H, to the magneto-electric
susceptibility tensor y;;. Their investigation is.of interest from a double point of view.
Firstly, in the presence of intense light fields (or a strong static magnetic field) they can
contribute significantly to the total Faraday rotation and be well accessible to experimental
observation thus providing novel information, inherent in the tensor gy, on the
properties of the medium. Secondly, by calculating the higher-order corrections to the
physical characteristics which define the process in the first non-vanishing order of pertur-
bation calculus (to ¥, in the case of Faraday rotation) we are able to determine those
critical field strengths E.,;, and H,; up to which perturbation theory is still valid ‘as
a-description of field-system interaction. Series of the type (1), commonly applied in non-
-linear optics, are menaingful as long as corrections of higher-orders are small. This, in
general, requires that the relationship:

E<E,, H<H,

shall be fulfilled (E,, and H,, being characteristic intra-atomic fields, amounting in most
atoms to about ~10° V/cm and 10® Gs, respectively). The correct value of the critical
fields, e.g. E,.;, can be found from the relation:

(=03 05 O)] 2 s seim(Eeri Beritdml- @

Because of the considerable magnitude of the non-linear coefficients, E,;, can be much
lower than E,,. Thus, for example, with regard to the alkali atoms perturbation calculus
ceases to be applicable for light shift already at field strengths of E~ 5X 10° V/cm [6],
typical for pulse solid-state lasers. Hence, when studying electro- and magneto-optical
effects in the fields of modern, highly powerful lasers, one has to keep in mind that tra-
ditional series expansions of thé type (1) can prove inadequate and that new,
non-perturbative methods for the theoretical description of the processes in question
have to be developed.

We now proceed to consider the non-linear corrections in intense light fields. The
action of strong magnetic fields will be the subject of our next paper.

3. General formulae for the magneto-electric susceptibility Yijum(— @5 @, —@, ®,0) = s

To calculate the susceptibility ¥°™, we have to extract from the dipole polarization
P y

vector
P(t) = (¥opae(r, DA Cyppe(r, 1)) 3

the component P(w) at frequency o proportional to the field strength product E*H. The
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wave functions ¥Y(r, t) are solutions of the Schrédinger equation of the atom within the
framework of perturbation theory with the interaction-Hamiltonian V,+ V,, where:

Ve= —(d E() = ~Re((d-E)e™™),
 Vi= —(u-HO), ‘ @

which, in the absence of interactions, go over into the unperturbed wave function of the
atom |nJ) with n— the principal quantum number of the atomic level for which r
is calculated, and J — the total angular momentum. Since states with J.> 0 are degenerate
in the projection M of J on the quantization axis, the mean values of the moment d in 3)
is to be calculated over functions with different M, M’, corresponding to the unperturbed
functions |[nJM) and |nJM"). Hence p(¢), and consequently x*™, are dependent on the
indices M, M'; however, for brevity, we refrain from specifying the latter. The susceptibili-
ties x5, Xij are defined similarly for degenerate states [4].

. Inasmuch as ¥, is periodical in z, ¥(r, t) can be expanded in a Fourier series with the
components P*)(r), k = 0, +1, ..., which, in turn, are expanded in series in powers
of E and H. We shall be denoting the expansion coefficients of ¥*, proportional to
E"H™, by Y%2(r) (obviously, n > k). With regard to the aforesaid, p(w) is easily shown

to be of the form: ,
P(w) = PH(—w) = (WIMIdIPE) + P QAP + <P d v,
T PRI + PN YLD + PR YLDy
I AInTM S PN + P, d P
+CEG P> + PTG + (P2 d P, )
It should be stated clearly that the functions { | and | » corréspond to distinct values M
and-M" of the, projection of the momentum J. -

The functions ¥{;%),(r) can be calculated by time-dependent perturbation theory
methods as solutions of the relevant inhomogeneous differential equations (see, the
review [7]). The tedious calculations involved by those methods can, however, be avoided
by having recourse to the procedure of solving Schrédinger’s equation in a monochromatic
field developed in Refs [6, 8]. In this case, the Yo mi(#) are obtained formally from the
expression for the (n4 m)-th order wave function of time-independent perturbation theory.

To illustrate this procedure, we shall calculate the second-order function ¥, which, for
the stationary perturbation V.= V,4V,, is of the well known form [91:

_ $P2UVi+Valps) {ps |V + Va0
Y,(r) = Z [p2> - (E,—E)(E, ~B)

Prsp2¥Fn -
V.+V,in
— i+ Vyiny Y |py PV Talm)
- E,—E,

p¥n

EERTN Z Vi +Valp) <plVi+Vyln) ©
" op#En

(Ep _En)z ’
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where (|p), E,) is the complete set of eigen-functions: and energies of- the non-perturbed
atom. If ¥, and V, depend harmonically on ¢ with the frequency w then, with regard to
Refs [6, 8], Wx(r, ) can be obtained formally from (6) on replacement of the basis (p), E,)
by the new set of “unperturbed” functions and energies:

{Ip, k), E, i} = {Ipde™, E,+ko}, where k =0, £1, ..., 0
and of the matrix: elements {P;|V;+ V,|P,) by the “averaged” matrix elements:
T
1 i .
Lp1, ki Vi+Valpas by = ? ‘.dt<Plel@1wt|V1 +V,|pse™ . ®
o

In particular, putting V; = ¥V, and ¥V, = ¥, from (4), we get for ¥,(r, r) with regard to
Eqgs (6—(@®):.
v, (r, t) = tp(zoe)o_{_ lIlg(’%h_i_ Tgw) iot: 'I’( )~
+ YRR Pl 2T R ©)

where:

P2 ) = Z P2 {p2s 21 (d* E) [p1. Ky Kp1: kil (- E(D) |n, 0

260 (Epz 2—En0) (Ep1 Ky n,O)
p2ip1ky :
=3 GE,.—zw(" INICE E*)GE,.—w(yl’ ry) (d* E*) |n), (10)
(w)(") =3 GE,.—-m(r’ r)(d- E*)GE,,("la r)(n: H) |">
+—‘ GE,.—-w(ra rl) (ﬂ ) H)GE,.—m(rla VZ) (d * E*) |n>’ ! (11)

Ze o(") GE,.('.‘, ry)(d: E)GE,.—w("n rz) (d E’_k) [n>
‘ '+Tf Gg,(r, r1) - E*)GE,.J}w("v r)(d- E)ln)
—1 Iny {<nl (d EYGr, — (11, 12)Gr,—alF2s ¥3) (d E*) 1)

_ +<nl(d* E*)GE“+w(r1’ )G+ o(r2 13) (d* E) [n>}, (12)
Pour) = GE,.("9 r)(a- H)GE,.("p ry) (pn- H) |n>
—Ln) (n| (u* H)Gg,(ry, #3)Gg, (12, r3) (8- H) [n). “(13)

Above, we introduced the notation z = u—<{nlu|n) whereas for. summation over the
virtual states in (6) we have recourse to the Green function: - :

8 . ip> <pl
Ge(r, v') = Eé—E‘ .
. P .
The functions. P2, P29 of (9) are derived from (10), (11) by changing the sign at

and interchanging E* — E. Similarly, the other functions ¥,,;,, of (5) can be derived

(14)
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by applying the well known formulae of time-independent perturbation theory of

(n+m)-th order.
The final expression for P(w) (and hence x°™) can be written in the form of a sum

of terms of three types:
P(w) = {II}+{S}+{N}. (15)
I. {IT} — these are matrix elements of the 5-th rank involving 4 Green functions Gy.
For example:
nIM|(d- E*)Gg ;,(ry, 1)dGg, 1 20(r2 73) (u- H)
X Gg,420(ra> 1) (d° E)Gg, 4 o(Fs, r5) (d* E) [nIM").

This term can be represented by a Feynman graph of the type of Fig. 1. The other terms
of the type {II} can be obtained from Fig. 1 by transposition of the photon lines and vertical

lines — -, corresponding to interaction with the field H; the energies E of the Green
wE*  wd * w, & w,E
, f
4 ; N \
i
w. 20 27 w
[nIM> [nIM>

Fig. 1. The Feynman diagram for the fourth-order magneto-electric susceptibility

functions G being determined in conformity with the energy conservation law for each
vertex. Obviously, the number of possible distinct terms is 5/2! = 60 where 2! intervenes
because 2 photon lines are identical.

. {S} —these are “‘secular” terms, occurring due to the circumstance that the
corrections to the wave function in the second and higher orders of perturbation theory
involve terms accounting for the change in energy of the level |n) in the field (cf., the
review [7]). Some of these terms — those corresponding to the Zeeman effect — have
been taken into account in {I1} by the interchange 4 — g. Moreover, P(w) contains contri-
butions from terms corresponding to the AC Stark effect and to the magneto-electric
shift in level proportional to E*H [4]. In the general case, {S} comprises 36 terms. As
an example, we adduce the term:

—<nIM|dGg, 1 o(ry, r3)Gg, 4+ o(r2, #3) (d - E) [nJM'")
x<{nJM'| (d" E*)Gg,+o(r1, ¥2) (d - E)Gg(ra, v3) (u- H) [nIM'>+ ...

HI {N} — these are normalization terms, accounting for the effect of wave function
normalization. In particular, in (12), the third term is a normalisation term. Usually,
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normalization terms do not occur in susceptibilities of lower rank (up to the fourth);
however, in higher orders, they have to be taken into account.

Thus, the general formula for x°™ is highly complicated and so bulky that we refrain
from adducing it here explicitly?. We note nonetheless that all the terms of 3*™ are given
by integrals of the G and, if a sufficiently simple analytical expression is available for Gg
as that derived in Refs [10, 11], can be calculated numerically by computer. The quantum
mechanical formula for y*™ can also be obtained following a different path, namely by ex-
panding the well known expression for the hypersusceptibility tensor y;;(—w; o, —o, ©)
[12] in a series in H, but the result cannot be expressed directly in terms of Green
function integrals of the type (15), and rather tedious intermediate transformations are
required.

With regard to the third-rank susceptibility, defining Faraday’s effect, the correspon-
dence between the two forms of expression of y;; is established in Ref. [13].

4. The non-linear correction to the Faraday effect, and numerical results

The non-linear corrections to. usual Faraday rotation can be of relevance in the
following two cases:
(i) when studying the rotation of the polarisation plane of a weak (probe) electromagnetic
wave with electric vector E(t) = E cos wt, propagating in the direction of the magnetic
field H, the gas being illuminated with intense light of frequency w;, # . In this situation,
the rotation angle becomes dependent on the laser field intensity in a way described by
the susceptibility ;. —®; ©, — @y, ®y,0). This mechanism is considered in Refs [14, 15],
(if) when the field E(z) itself is intense (laser light) and the nonlinearities, induced thereby
in the gas, cause an additional rotation, proportional to the light intensity. Since here
no probe beam is required, and the rotation effect bears on the polarisation plane of the
intense laser wave, this setup presents some valuable simplifications for the experimenter.
We now proceed to analyze the case (if) and the relation between the non-linear correction
to Verdet’s constant ¥{(w) and the susceptibility x°™, investigated in Section 3.

Applying the usual definition of the Verdet constant V{(w):

W n_—n,

ACUS 2¢ H

and taking into account that in a satisfactory approximation

(nh—DE+(0) = 47P4(0) = T (P (@)+iP,(@)},

\/_

2 For non-degenerate states, the structure of ¥°*™ is somewhat simpler, inasmuch as for levels with
J = 0 one has the equalities

Ol(x - H)I0> = O,
0l(x - H)GE .. .. Ge(e - H)|0> = 0
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we obtain by (1) the following expression:
2 2
V(CO) = l‘_c";" [Xxyz( w; w 0)+Xxyyyz( (O w, —0, 0, 0) IEI ] (16)

for the setup ‘when the ﬁeld E@t) = E cos wt propagates in the direction of the vector H
(along the z-axis). Above, N, is. the number den51ty of atoms in the medium, and # the
refractive index (with satlsfactory accuracy, _equal to unity).

Eq. (16) holds only for’ non-degenerate states with J = 0, " when Xxy( w; w) =0.
At degeneracy V(o) contams temperature -dependent terms which, if effects proportlonal
to |E|? are taken into account in V(w), become rather bulky [14]. In this paper, we shall
consider but the ground states of hydrogen, the inert gases, and alkali atoms for which
the temperature-dependgtit terms do not contribute to ¥(w). (Though these terms are
non-zero for alkali metals [4], their contribution is not decisive). To simplify the calcula-
tions, the multiplet structure of the excited levels can be neglected; this does not affect
V(o) far from resonances [4]. In this approximation, ., is proportional to the derivative
da(w)/dw of the dynamical polarizability in conformity with Becquerel’s formula whereas
Xxyyyzs 0 conformity with the procedure of Section 3, is expressed in terms of integrals of
the radial Green function of the optical electron. For the latter function, use is made of
the expression derived in the approximation of the model potential method- [10, 11].

- In order to provide an example' of the numerical results it is convenient to re-write
Eq. (16) in atomic units, as follows: * - 5

V(@) = nNor’o{Yo(w)+ Yy(o) [E%, ' a7

where a = 1/137 is the fine structure constant, and Y, = da(w)/dw.
Table I shows the frequency-dependence -of Yo(w) and Y;(w) for hydrogen. Y,(w)
is found to depend on @ more strongly than Y{w). In part;cular Y, exhibits a resonance
E ____E s . . ] b .
at o = —* 15 _ 48772 cm~! which is absent in'Y,. The subsequent resonances of Y,

En_El

are given by the relation w, = ~, with n>> 4.

Tables IT and I show ¥, and Y, for the alkali atoms and inert gases at the fundamental

frequencies and harmonics of pulse ruby and neodymium lasers. These results permit the
prediction that the non-linear corrections to ¥(w) are accessible to observation in experi-
ment. Thus, for xenon, the non-linear effects contribute about 40 % in a field 6f 5 x 107 V/em.
Such fields are currently in use in experimental work on the ionization of inert gases [16].
Close to resonance the role of the non-linear effects increases steeply. In fact, in the case
of hydrogen at a mistuning of about 30 cm™! (w = 48800 cm~!) the term with ¥,(w)
contributes a correction of about 209, in a field of but E~ 5x10° V/em.
' Eq (2) ‘moreover leads to the magmtude of the critical field E,,;,, discussed in the
Introduction. Typically, E,;, for inert gases lies at ~10® V/cm, and for alkali atoms at
(5% 10%+107) V/em. It is of interest that these values are of the same order as in the case
of the non-linear corrections to the level shift-discusséd in Ref. [6].
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TABLE 1

Dispersion of the- coefficients Yy(w) and Y,(w) for the ground state of the hydrogen atom

wx 1073, cm!

9.44

14.4

18.88

28.8
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
47.2
47.4

47.6 -

47.8
48.0
48.2
48.4
48.6
48.8
49.0
492
49.3
49.5
49,7
49.9
50.0
50.1
50.3

Yo(w), at. units

|

Y,(w), at. units

0.390
0.615
0.841
1.476
15.86
16.73
17.67
18.67
19.75
20.90
22.13
23.47
23.75
24.04
24.33
24.62
24.92
25.23
25.54
25.85
26.17
26.50
26.99
27.33
27.68
28.03
28.20
28.38
28.75

'28.73
49.38
75.78
203.3
6.33x103
7.907x 10°
1.015 x 10%
1.352x 10*
1.896 x 10%
2.875x 10*
4.979x 10*
1.124 % 10°
1.404 x 105
1.811x 10%
2.439 % 10°
3.486x 10°
5.438x10°
9.764 x 10°
2.281 x 10°
1.057x 107
4.030x 10®
6.055 x 10°®
1.747 x 108
1.164 x 10
6.401 x 10%
4.230x 10%
-3.192x 10°
2.895x10°
2.701 x 105
2.566 % 10°

TABLE II

Coefficients Y, and ¥, for atoms of the alkali metals at the radiation frequencies of neodymium
(on = 9440 cm™!) and ruby (wR = 4400 cm—1) lasers

Atom

Li

Na

Rb
Cs

8. 5x103
4.52x103
3.12x 104
3. 9x 104
9. 7x10*

I
|

Y,

—9.19x 10°
1.71 x 10°
2.54x107
8. 9x 1010

—7. §%x10°

1.05x 106
4,18 % 10*
2.26x 10
1. 8x 105
7. 2x 10

I — 471 x 101
9.67 x 10'°

— 1.46x 10%°
—10. 4x10%°

2. 6x10'°
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TABLE I

Coefficients Y, and Y; for inert gases at the fundamenta!l and second-harmonic radiation frequencies
of the neodymium and ruby laser

E——— — — - - — — e

ON wWR 20N 2wgr

Atom = = —_— —

% o | % | v | %] n| n| n

| |

He 0.146 148 | 0223 1231 0.295 ‘ 3.13 ‘ 0.463 ‘ 5.32
Ne 0.704 12.26 | 1.08 19.6 1.44 271 | 230 50.2
Ar . 3.80 1.97 591 | 329 795 | 486 ‘ 13.3 ‘ 1150
Kr 710 | 538 | 111 927 15.1 | 1432 | 261 | 4040
Xe 155 | 1913 | 246 3474 340 | 5780 | 620 | 24100

Accordingly, when studying magneto-electric phenomena in the radiation fields of
powerful lasers, non-linear effects contribute essentially to the atomic constants measured.
At still higher intensities of the laser beam, they can make the interpretation of the
phenomena in terms of classical non-linear susceptibilities impossible.

The authors are indebted to K. Flatau for the English translation.
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