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In this paper a comparison of quantum-mechanical'description of three mode nonlinear
process and classical description of nonlinear interaction of three travelling waves is carried
out. It is shown here that both these descriptions correspond only if the spatial and frequent-
ional dispersions are neglected. For the dispersional case the average index of refraction
and corresponding normalization relations have been introduced here that enable the transi-
tion from one description to the other one. These relations were used to demonstrate the
parametric generation from quantum noise in terms of measurable quantities and spatial
parameters.

1. Introduction

Recently the quantum dynamics of nonlinear processes with three mode Hamiltonian
has been developed [1-18]. This theory enables the description of great number of quali-
tatively new effects which are mainly connected with statistical properties of light, as
well as explanation of such eftects, as e.g. parametric generation from quantum noise,
that cannot be explained by means of the classical theory.

However, the simple quantum-mechanical description of nonlinear processes by
means of three mode Hamiltonian does not comprehend some physical parameters that
are included in the classical theory [19-21). Physical meaning of the coupling constant
in the interaction Hamiltonian has to be determined by comparing the quantum-mechanical
and classical models (see e.g. [18]).

If we are concerned with the description of travelling waves nonlinear interaction
by means of quantum-mechanical model two questions arise here, namely what is the
relation between the time coordinate ¢ and spatial coordinate z (z being the normal distance
from the boundary of nonlinear medium) and how the normalization volume V has to
be chosen.
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As for the first question some authors (see e.g. [8, 12]) reduce the problem of nonlinear
interaction to the vacuum so that they use the simple relation z = ct; ¢ being velocity of
light in vacuum. The other authors (see e.g. [2]) make use of phase velocity: z = vz; v being
the phase velocity that is the same for all waves. Colinear propagation of all considered
waves and phase matching are assumed in all cases.

Also normalization volume ¥ is considered in different ways. For instance in |8, 12]
the normalization volume is related to the counting time T: 'V = ScT where S is trahs-
verse section of the beam, whilst in other studies (see e.g. [17, 22]) th: volume V¥ is con-
sidered as the cfiective volume of the. nonlinear. crystal.

In this paper we shall compare both mentioned descriptions with the aim of
demonstrating the parametric generation from quantum noise in terms of measurable
quantities and spatial parameters.

For simplification we shall assume nonlinear interaction of. three monochromatic
plane waves at frequencies w;, ®,, w; only:

W3 = 01+, M

and phase matching condition for wave vectors k;, k,, k3 at ,, w,, ws, respectively,
will e assumed as well:.
k3 =. k1 +k2. (2)

The nonlincar medium .will be consi:devfed to be optically transparent for all three
frequencies w4, w,, w;.

2. Classical description of nonlinear interaction of three travelling waves in z-domain

The mutual interaction of three monochromatic plane waves
E; = eAz) exp [itk; - r—o;t)], i = 1,2, 3, (3)

that satisfy the relations (1) and (2), in nonlin :ar quadratic medium can be described from
the point of view of Maxwell electromagnetic theory by means of three coupled first
order differential equations for complex amplitudes 4,(2), 42(z), 43(2) (see e.g. [20]):

dA,(z)

T . (42)
dz

d4,(z) = —io,A3(2)45(2), i
dz |

ddy(2) _ —103A1(Z)A2(Z) (4c)
dz

The notation is as follows: z is the normal distance from the plane boundary of the
nonlinear medium, ey, e,, e; are unit polarization vectors, oy, 03, 63 are constants of

nonlinear coupling:
1/2 o8
o= () 2 i=123, ®)

go vi(y, ;) cos &; cos §; .



721

with
K=1te plo =w;—0,):e5e; = 5 &, p(0, = 03— 0,): eze;
= Loy pw; = o +wy) eje,, (6)

&0 is electric permittivity and p, magnetic permeability of vacuum in SI units, vi(wy, §,),
va(@,, 82), vs(ws, s3) are linear indices. of refraction in anisotropic medium, B4, B2, B3
are angles of refraction for ray directions fi(s,), f2(s>), fs(s3) in the individual waves and
84, 82, 85 are angles’ of anisotropy, i.e. the angles between the ray directions J1: 025 15
and the normal directions sy, s,, 85, respectively. y represents third rank tensors of the
nonlinear quadratic susceptibilities.

The time average values of z-components of Poynting vectors in the individual waves
are given as follows [23, 29]:

‘172
G, =7 (*Eo—) 14;*vi(w;, s;) cos §;¢c08 B,  i=1,2,3. U
o ,

If we denote N, ,(z), N, ,(z), N3 ,(z) the average numbers of photons at frequencies
Wy, W4, @3, Tespectively, which flow through the unit area oriented in the direction of
the normal to the boundary (z-axis dir>ction) per unit time (the photon fluxes), then
it holds:

Gi(2) = hoyN,(2), i=1,2,3. (8)

From the equations (4) and using (7) and (8) we can simply derive the following
conservation laws for the photon fluxes in z-domain [24]:

le,z(Z) dNZ,z(Z)

=0, 9
iz dz (%)
le z(z) dN3 z(z)
: + : = 0, 9%
dz dz (°b)
AND)  dNs2) _ -
dz dz

The sclution of the equations (4) for real amplitudes leads vsually to the elliptical
functions which can be reduced to the hyperbolical functions in some asymptotic cases
[18-21]..

For our needs we shall introduce the solution for sum frequency generation
03 = ®;+m,. When considering the boundary conditions

2 3 h
Q) 14©O)F _ 2k N0 = 2 sz(o) ,2_ N,, (102)

Gy 0y

A3(0) =0, or N,.(0)=0, , (10b)
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then we can obtain the solution for photon fluxes in the following form (see [19, 20D):

N, :(2) = N, ,(2) = Ngsech® (N§/%uz), (11a)
N3 (2) = Ny tanh® (N§/%pz), (11b)
where
s K Mo 31%;_ 2ho,00; o 1z (12)
HTES & V1V3V3 €OS & COS &, €Os J3 cos B cos f; cos B |- )

The solution for phases is not introduced kere because it is not important for our
considerations. . ‘

3. Quantum-mechanical description of three mode nonlinear interaction in t-domain

The three mode nonlinear quadratic process can be described from qudntum-mechani-
cal point of view by means of the trilinear time-dependent Hamiltonian (ses e.g. {1, 2, 5]).
When using the Heisenberg equation of motion this description leads to three coupled
first order differential equations for the annihilation and creation operators d,(¢) and
d; (¢) relative to the i-th mode (i = 1, 2, 3) as follows (see e.z. [9, 11, 26]):

i 0,000+ 881 06,00, (13)
_ddy(1) ; PN

i 00+ 88100, (13b)
i 0 a0+ 80,000, (139

where g labels the real coupling constant.

The total photon number in the i-th mode is given by the expectation value {n,(¢))
= (ylaO|vd; nlr) = a;f(H)afr) is the photon number operator and |y} representing
a state of the system.

Making use of the equations (13) we obtain three photon number conservation laws
in the standard way:

d d
7 <M= =< (1)) =0, (14a)
d d
7 S+ 2 Kns(0) = 0, (14b)
d d
7 <ny(8)) + 7 {ny(1)> = 0. (14c)

Supposing that the photon statistics of the generating modes are conserved in the
course of the nonlinear process, we can find closed sclutions for mean photon numbers
{nft)) (see e.g. [12, 25, 26)).
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The sum frequency generation can be described in the similar way as in [12]. For
the initial conditions , .
{n;(0)> = {ny(0)) = no, (15a)
{n3(0)> =0, (15b)

and coherent generating radiations with the Poisson photon number distributions [28],
when neglecting the effects of quantum fluctuations, the following expressions were
found [27]:

(ny(®)y = (na()) = ng sech® (ng/*g0), (16a)

{ny(1))> = n, tanh? (nh/*gt). (16b)

4. Comparison of quantum-mechanical and classical descriptions

If we compare the conservation laws (9) and (14), and the courses of photon fluxes
(11) in z-domain and the courses of mean photon numbers (16) in 7-domain, certain
analogy appears at first sight.

In order to compare both descriptions it is necessary to express the expectation value
of the Poynting vector operator {v|G}|) in terms of {(n;> for each mode. It must be also
considered that the most nonlinear processes take place in anisotropic crystals. By the
similar way as in [1, 2, 13] and using [29] we found for {y|G;|v) the following expression
in linear anisotropic medium:

o R how;c
{plGilyy = (YIE X Hily) =

Vv, cos

5 (nd+ D (17)
V labels the volume in which the electromagnetic field is considered (normalization or

[+
quantization volume) (see e.g. [1, 2, 13]); - —— represents the ray velocity in f; direc-
i €08 0; ’
tion.
Making use of (7) and (17) and neglecting 1 we obtain the following equivalence for

the z-component of time average of the Poynting vector:
= hawc cos B, ho,

Gi.=N: how, = ————"tepy = X
i,z i,z w; VV,- cos 5,’ <nl> S‘L'i <nz>’ (18)

where the volume V' = S/ was chosen in such a way that the area .S is perpendicular to
the z-axis and / lies in z-direction. The time 7, is given by

lv; cos o;

(19)

ccos fB;

i.e. the time that a travelling wave at ,; needs for passing the distance / in z-axis. The
ccos f;

quantity ——ﬁ' represents the z-component of ray velocity of the ménochromatic wave
Vi i '

at frequency ;.
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Now let us consider a nonlinear plane-parallel plate of the thickness L. The Cartesian
coordinate system x, y, z is oriented so that the z-axis is identical with the normal to the
both boundaries of the plate. An aperture having the area S is assumed to be placed in
the first boundary. The real amplitude (intensity) of a wave at w; is changed at the passage
through the nonlinear plate in dependence of the normal distance from the first boundary z.
Thus the amplitude (ihténsity) in the second boundary differs from the amplitude in the
first boundary. We shall assume continual flowing of electromagnetic waves through
the ncnlinear plate.

The matter of our interest is to calculate the total photon number in each mode in
quantum mechanical description which corresponds to the classical description of non-
linear interaction of travelling waves.

Let us assume that, in principle, we are able to count the photons that pass through
the first and second boundaries, respectively. When the counting is made in a time T,
then the number of photons at w; which have passed through the first boundary in the
time .T is .

T

<nl(0)> = J‘NLZ(O)SL?I‘ i, z(O)ST Nl z(O)Sll T 5

0

V; €0S J;

= (20)

and the number of photons at w; which have passed through the second boundary in the
same time T is

T
; v .v;co8 o
(i) = fN o(D)Sdt = Noo(DST = Ny L)Sly ——t., (21
¢ cos fi;
0
ccosff; . . ! . .
where [; ; = T—sé— is the distance which was passed by a travelling wave at w; in
v V; €O i a . »

the counting time 7" and
Lv; cos o;

B ccos f; 22)
is the time of passage of the travelling wave at w; through the nonlinear plate.

If we want to determine the ensemble of photons in each i-th mode of quantum-
-mechanical model which is analogic to the passage of the travelling wave at @, through
the nonlinear plate, that is clear that the time of interaction T, which has to be
substituted for 7 in (20) and (21), must be equal to the time of passage of the wave

at w; through the plate®:
Tinter = TiLe (23)

1 Tn most cases the comparison of classical and quantum-mechanical results is independent from
the choice of Tinter. However, there are effects there, such as parametric generation from quantum noise,
for which the magnitude of Tjpier is important for deriving some formulae in terms of measurable
quantities.
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The time of interaction is connected with the normalization volume V = ST;,..

¢ cos B; ) a8 " N ) L
X — B and it occurs in the mutual relation between the coupling constant y in the

v; COS
classical description and the coupling constant g in the quantum+mechanical description.

Considering the interaction time greater than the time of passing the wave through
the plate: T}, > 7;;, it would mean that even such photons were included in the
ensemble of photons in quantum-mechanical model which correspond to such waves that
are not present in the nonlinear medium simultaneously and, consequently, their mutual
interaction is impossible. '

In the opposite case, considering Tmter < 1;1, it would mean that a smaller photon
number was considered than that one which would correspond to the limit case of simult-
aneous presence of two waves in the first and second boundary, that follow 1n the time
interval 7, ;.

An unpleasant situation takes place when the passage of three waves at w,, w,, ©;
through the nonlinear plate is considered simultaneously. Namely the z-components

0s B;

— (i = 1, 2, 3) are different because of frequentional and
i i

spatial dispersions, thus also the times of passing the waves through the plate t, ;, 7, 5,

7,,;, must be different.

When using the relations (20), (21), (22) and (23) for comparison of quantum-mechanical
and classical descriptions, we can see that for a dispersive medium both the conservation
laws (9) and (14) and the expressions for photon fluxes (11) and mean photon numbers
(15), respectively, cannot be fulfilled simultaneously.

The mutual non-correspondence of the both descriptions can be, perhaps, demonst-
rated more clearly when comparing the classical (4) and quantum-mechamcal (13) equations
in #-domain.

From (13) we can obtain in a standard way the followmg differential equations for
quantum-mechanical operators in #-domain:

of individual ray velocities

(AR () dhs()

Cdt 1 dt dt .

—ii(d’f(t)"(t)—"'d'(‘ () = —i L (@
=i a (1) _i.l'.— a; (1)dy(9) = ’,‘la;(aa()as())

= g{d; (t)d;(t)a;,(t) al(t)al(t) 3(’)} (24)

The quantum-mechanical operators d; and d; (n = d;" 4;) correspond to normalized
amplitudes a;, af satisfying the relation (n,)— aia; = la;|? (see e.g. [1,2, 18]) Using
(18), (7) and (8) we can find the normalization relation: .. .

po\?  2hoe P2 , ,
lAz[ = — ) 52 2 lai', i'= 13 25 3~ (25)

& Vi cos® é;.]
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In order to obtain the classical equations for the normalized amplitudes ay, a,, a,
in z-domain it is necessary to use a suitable relation between the space z-parameter and
the time #-parameter. '

Since in the classical model of continuous flowing electromagnetic waves there
appear ray velocities or their components only, that is clear that each amplitude g;
is connected with #-coordinate by means of corresponding z-component of ray velocity.
Thus it holds:

ccos fB;

t; for the amplitude a;.
v 005 3, or the amplitude a (26)

Using the last relations (25) and (26) we can obtain from (4) the classical analogue

to (24) as follows:
|4 , 4
i [2; <"2(t)>1=,2 =~ [a <"3(”)>l=,3

Trd
; [E <n1<t>>]t=h

d d
i [ (“‘(t)“l(t))] » i[;z; (“3(‘)“2(‘»] == [ (as(t)ag(t»] ]
= x{a’f(tl)a’z‘(tz)as(ta)—al(tl)az(tz)a’g(ta)}’ @7
where
N ¢® cos B cos B, cos f3 172
e |;Vv1v2v3 cos &, €os 8, cos 63] # (28)

and p is given by (12). The times #,, ¢,, t; are given by (26).

When comparing the equations (24) and (27) we can see that both equations do not
correspond because of the dispersion of z-components of ray velocities of the individual
waves, Namely each normalized amplitude a; is considered in the time #; and the times
ty, t3,’t3 are different. Thus the equation (27) is incorrect because three different times
occur as parameters there.

Moreover when quantizing the normalized amplitudes a,(7;) we are not able to guarantee
the validity of corresponding commutation relations.

Mutual disagreement of quantum-mechanical and classical descriptions is, apparently,
the consequence of the fact that both the spatial and frequentional dispersions are not
included in the quantum-mechanical model of nonlinear interaction.

Only in the degenerate case, when w; = w,, €;4; = e,4, and k; = k,, i.e. for second
harmonic generation or for parametric generation of half frequency, there is a perfect
agreement between the quantum-mechanical and classical descriptions there.

The greater the dispersion of z-components of ray velocities is, the greater disagree-
ment of both models appears; especially this disagreement is extremely great if any of
considered frequencies lies near the absorption region.
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To the similar inconveniences leads also a quantum-mechanical description that uses
the localizéd momentum operator and the Heisenberg equations in spatial coordinates [30],
whose application for studying nonlinear problems was proposed in [8].

The complete quantum-mechanical treatment of nonlinear optical interactions in-
cluding dispersional effects is, perhaps, possible using the perturbation theory only.

‘However, the simple quantum-mechanical description of nonlinear optical processes
with the trilinear Hamiltonian enables the treatment of many new effects, which do not
cohere essentially with the dispersional effects. The description of such effects by means
of more comphcated quantum-mechamcal model would 1nadequately aggravate their
mathematical treatment.

. We are of the opinion that, in rather good approximation, the results followmg
from the quantum-mechanical description can be expressed in terms of classical quanti-
ties and spatial parameters, when reduced quantities are introduced which neglect the
dispersional effects.

Generally the requirement of mutual correlation. between the quantum—mechamcal
and classical descriptions leads to the following relat1ons
(i) The relation, between z and ¢ must be the same for all frequentlondl components that
are considered:

z' = —1, o ' 58 (29)

where v, is a reduced index of refraction.
(ii) The normalization relation (25) is to be replaced by the following one:

A= (*o Y 2hoe llzl ! 0
iy € V'vov; €08 8; COS f; e (30)

The relation between the photon fluxes (in classical description) and the mean photon
numbers (in quantum-mechanical description) is then given by:

Nis(e) = - <ni (t =Z—‘c'°)> (1)

and the constant of nonlinear coupling g in the quantum-mechanical description is given by
( . c3 1/2
g= va U

Ho 2hctw w5 g
—x|(* e , ——1 .
1\ & Vvgv v,v; €OS 04 COS §, COS O3 cos By cos B; cos By

It is very simple to make sure that using (29)~(32) the excellent agreement between all
results of classical and quantum-mechanical descriptions appears for any reduced index
of refraction v, and any normalization volume V. ‘ ‘

However, there are effects, such as parametric generation from quantum noise, for
which the resulting formulae in terms of classical quantities depend -on both the reduced
index of refraction v, and the normalization volume V.
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With respect to above comparison we assume that the most proper way is to choose
vo as the geometrical average of “z-projections” of all three indices of refraction:

V,V,V; €OS 8, €os &, cos 55\1/3
Vo = -
cos fi; cos fi, cos B,

(33)

and the normalization volume V is to be chosen as the effective volume of the nonlinear

medium
V= SeffectLb (34)

where S,;..; labels the effective area on the surface of the nonlinear plate and L is the
thickness of the plate.

However, the choice of the relations (33) and (34) could be a matter of discussion.

When introducing the relations for reduced quantities, one can see that the correla-
tion relations for photon number operators of the type (A '7:(t) n}'(¢41)> in t-domain
correspond well to the correlation relations for intensities (7;(z) I{(z+20)) in z-domain,
whilst the use of correlations of the type (AN n"(t) n"’(t+r)> @ #))is irrelevant to the
use of the correlations (I4z) I™(z+20)> (i # j). v

In this paper we did not deal with the conditions that are put for the volume V in
which the electromagnetic field is quantized. These conditions were treated in many studies
(see e. g. [1, 2, 13, 18, 30]) and they have no special meaning for our purpose.

5. Description of purametric generation from quantum noise in measurable quantities

In this chapter we shall use the above introduced comparison to demonstrate the
parametric generation from quantum noise in terms of measurable quantities in z-domain.

Parametric generation from quantum noise is a spontaneous decay of a pumping
photon w; into two photons w; and w, when both amplitudes of subfrequencies w, and
w, equal zero at the beginning of the process. The classical theory is not able to explain
this effect because the nonlinear polarizations at all considered frequencies equal zero at
the beginning of the process [19-21]. The effect of parametric generation from quantum
noise can be explained by means of quantum fluctuations when using the quantum-mechan-
ical description {1, 2, 7, 17, 18, 26]. Thus the results of quantum-mechanical treatment
have no analogy in the classical description.

In [26] it was shown that the parametric generation can begin from quanium noise
with coherent pumping light having the Poisson photon number distribution [28] and the
complete depletion of pumping light is possible.

"The following expressions for the average photon numbers in the individual modes
were found in 7-domain in [26]:

)i (n3,0+1) sech® (n}/3gt)
07 =100 Tt st o330 K
2 1/2
() = (n(D)) = ng g 200 (n3080) (36)

[1+ n3,0 sech® (n3/ggt)]
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where 7 o labels the average photon number in the pumping mode at the frequency w;
at the beginning of the process (¢ = 0) and g is the constant of nonlinear coupling given
by (32). ' '

The average time of the first photon decay was computed as [26]:

¢ y 0.88 ?%37
‘cphot - n;fgg 2 ( )
Now we shall use the relations (29)-(34) to express the formulae (35), (36), (37) in terms
of classical guantities in z-domain,
It is convenient to express all quantities as functions of the thickness of nonlinear
plate L. .
The following expressions for the real amplitudes 4,(L), 4,(L), A5(L) at frequencies
Wy, s, 03, respectively, were found in the second boundary of the nonlinear plate:

SvoK ‘ )
(1+ 2;20 |As,o|2L) sech? (|43 olo'/26/2L)
AL = Azl >X— - , (38)

Sy, K o '
[1 + 20 |4, 012L sech? (|A3,0|a}/za;/2L)]
2hco,

tanh? (|43 olo1?03/*L)

AL D) = "a— 43,0/

SvoK
2 1+ — 2 |4 0l°L sech? (|4, olot/%64/*L)
2hcoy

) (39

where |4 o] is the absolute value of the amplitude of pumping radiation at frequency w;
in the first boundary of the nonlinear plate.
The total powers of the three considered waves at w;, ®,, w; that emerge from
the second boundary of the nonlinear plate, related to the vacuum, are given as follows:
The emerging power of pumping radiation at w; behind the plate is given by

1/2 KP. L 1/2 P 1/2
[1 + <ﬂ) i 0 ]sech2 <I:2 <ﬁ°—> 20 0162] L)
2o hecog cos ag £ S cos oy
12y k. L 172 1/2 \
i {2) i (2(2) s )
&g fico; cos a3 £ S cos o,

and the emerging powers of subfrequencies at w; and w, behind the plate are given by

Z3(L) = P30 (40)

01,2 COS 0y 2

91,2(14) = 923,0

G5 COS 03
- 1/2 P 172 o
tanh® ([2 <”—°) e 0'162] L)
£ S cos a3
" _
1+ o g M sechz( 2 ) 7 Pao 040 1/ZL
£ hco, cos ag \ £ Scosay | °

(“4n
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where o, 0,, 03 are given by (6), v, is to be taken according to (33) and S represents the
effective area in the second boundary of the plate which covers all the emerging beams
at frequencies o, , w,, Wa; %1, %2, a3 represent the angles of refraction into the medium
behind the plate (vacuum or air), especially o, represents also the. angle. of incidence of

pumping radiation at the first boundary.
For “one photon plate thickness”, i. e. the thigkness of the nonlinear plate in which
the first pumping photon is decayed, we found with respect to (37)

i -0.88

L hot = ~ .
phot ) o 172 P50 iy 172
L \& Scosos © 2_' ’

The thickness of nonlinear plate Ep.hot can be considered as. the ‘minimum thickness
of the nonlinear medium in which the process of parametric generation from: quantum
noise can start.

The boundary effects were neglected here.

(42)
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