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CORRELATION FUNCTIONS OF HEISENBERG
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By J. CzAkoN
Institute of Physics, Silesian University, Katowice*
( Received May 19, 1977)

The correlation functions of the Heisenberg ferromagnet with a single-ion anisotropy
in the form — ZD(S})2 were calculated for the case of spin § = 1. The procedure of decoupling

of higher order Green functions based on the Ishikawa and Oguchi method was applied.
The temperature dependences of magnetic susceptibility, specific heat and internal energy

D
for the case when A <1 were determined. The magnetic susceptibility critical index 9
o

rapidly decreases from y = 2 for the isotropic Heisenberg ferromagnet to p = 1 for higher
values of the crystal field anisotropy. The Fischer critical index 7 for the correlation functions.
equals zero. The correlation functions in a long-range limit assume the Ornstein-Zernicke
form. The length of transverse correlations assumes finite values at the phase transition
point. The length of longitudinal correlations appears to be convergent for T = T, in the

D
approximation of — < 1.
[+]

1. Introduction
Several authors have investigated the effect of single-ion anisotropy of the -DY (S})2
I

type on the thermodynamic properties of exchange interacting spin systems [1]. Some of
them used the method of two-time [2] retarded Green functions [1] while other employed
the diagram method [3]. However, for several years the problem of calculating the longitudi-
nal correlation functions, needed for determining several thermodynamic properties,
has not been solved. To calculate the functions of longitudinal correlations we shall also
apply the method of Green function equations of motion. Since the new methcd of the
Green functions decoupling has been tested for the case of the isotropic Heisenberg
ferromagnet [4], the result obtained in the present paper seems to be credible. The:
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obtained critical indices of magnetization, susceptibility and specific heat support the
scaling hypothesis, however lengths of the longitudinal and transverse correlations at the
phase transition point are finite. The single-ion anisotropy is distinguished by its own
axis in a crystal and that is why the problem of limiting values of critical indices at
D — 0 seems to be very interesting. The smoothness hypothesis predicts for such a case
very rapid changes of critical indices. We have tested this problem for the case of the
maguetic susceptibility critical index y.

2. Green functions

The Hamiltonian of the problem has the form
H=—phYy, S3—DY (SP*— ¥ Jrf(S38;+578)), @.1)

47 - ) f#g
where h is an external magnetic field, D is the single-ion anisotropy parameter, J;, is
exchange integral, J,, = 0 for f= g. For such a system we introduce Green functions [2]
G3o(t) = K1) S, 2.2)
F§ ) = Lo 10 1835, ), (2:3)
a=—S,..,8=1," 8§} =S;—<(S»,

where S is a value of the spin for each lattice site, operators L, , fulfill the following
commutation relations

[~4h % 3= (57 Buvrl- = [+ D@2+ D1 @4
and the spin operators are connected with them by
N
S§ = Z CfL{Hl,w
a=-5

s
Sj—‘- = Z CfL’;,aH,

a=—8

S —————
S = Y M, C=JSE+)-aletl). (2.5)

a=—5

Equations of motion of the Green functions G, F} g assume the form [2]

EQE, 1, J 418,y = [Lhr 1 A4Sy 1->+[uh+DQo+ 1] KLt 1.l 44Sy Y

s
+2 g pr ﬂ;s ﬁ((LI:?,ﬁLj;+ l,ozlAhS;>>
s .
X dr X SCfCi(((Lf“ La+1 "Lj.;,a)LpH 1,914185 D
p =

s
- Z pr Z Cg<<L€3,ﬁ+ 1(05— 1Lj;+ la—1 C§+ 1LJ;+ 2,a)‘|Ath_ >>- (2-6)
P )
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Now we decouple the Green functions appearing in these equations (4, = S2 or
4,=1) [4]

LG s 1 WIS2Sy S = (L S G+ s> F s
L sl 1,48, Y = (I 4G5,
<<LI;9,/3(C§— lL{c+ la—1—" C2+ 1LJ;+ 2.0 A4S, D = 0. @

Here the decoupling procedure is of the nature of the generalized RPA decoupling
scheme [5], [6] and lies in neglecting of the highest order cumulant corresponding to
the given Green function.

After applying the approximations mentioned above we make use of the Fourier
transformation [7] and the so-called nearest neighbours approximation

S—-1

~,=Z—:—s {[E—cwo—D2y+1)15,,+P5C3I,}GUE) = P, (2.8)
s-1 )
TZZS {[E~wo—DQy+1)18,,,+PiC3J s JF}L (E) = A4S, 2.9
where
P = Cll i1 ae1—Lhods
wy = ph+20J,, o =<{SP, (2.10)
and

Ag = C5<(Ll§z+ l,a+1 _Ll:z,a)gik> - <L‘{z+ l,aS:q>

1 S

C3GUE)+2 Y B ;83 0T GHE). (2.11)
S g=-8

s_
—ClTr1ar1—LedS20T, %
ﬁ:
The following are the solutions of matrix equations (2.8) and (2.9)
ANE
GWE) = S—_yg) s (2.12)
1+J, Y CRA4(E)
B=-5

S—-1 :
CS ASPS__ASPS
A§+Jk+q ﬂ< v B B 7)
| E—wo~D2f+1)
FL{E) = s R — —— (2.13)

1 b4
[E-00=D@+ D] [1+]ieg 3 CoAX(E)]

vlvhere
S
Py

A5 = —
b E—w,—D(2B+1)

(2.14)
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Further calculations for spins § > 1 can be performed only by laborious numerical
calculations. Let us restrict ourselves to the case when S = 1. In this case

E—wy+D
GYE) = ‘/ e ——— = 2.15
¢ (E-0h) (E-0D)’ 2
E—wy,—D -
G "(B) = \/ (N = 2.1
‘ E-0D) (E-0))’ F
and
F,(z,q(E) AG[E— wO+D+(O-_A')Jk+q] ~AL 1(G+A‘)Jk+q, 2.17)
(E—0L, ) (E—Q%.,) ‘
A [E—wo—D D s = As(c—1)T
F]:ql(E) - 1[ @ +(f+ ) k~l—q]2 0(6 ) k+q, (2.18)
(E—Qp1g) (E—Qisg)
where with the use of (2.10) and (2.5) we have substituted
ci=ct, =2,
2 J2
Pg = 5/2—(a+/‘t), P, = —(a—i),
A=3K(SH -2 (2.19)

The functions 4} and A%, are determined by the equation (2.11) and Q4% are the solu-
tions of

E?—2E(wy—0J3)+ i —D*—2J (wee—AD) = 0. (2.20)
Using the spectral theorem [2, 8] from (2.17), (2.18) for the correlation functions we. get

the expressions

2
e ooy (@ —0u+ DN@D- @00t DN@D], (2D

: 2
Sk Lo,-1> = \/2 Q: ;22 [(2% — 0o~ D)N(QQ) — (i —wo—DIN(QD)].  (2.22)

Then we can calculate by the same means from Green’s function Fg (E)

i
<S3 S” Lk+q> - Z 1)r+1
e D er,—az ) @i—a)
x ([ s g = @0+ D +(6 =D s 1BL, @) — (0 + )T s B, D)}, (2.23)
2
N 1
(83,8 ke > = Z (=i —

o (O, ,— Q2. ) (Q—92)

r=1

% {[ @+ g— o =D+ (0 + D4 B2, @)~ (0 =D is BiK, D}, 2.24)
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where

Bi(k, @) = 2 (Xi—XDJ, Tk, @) =/2 (Xi—Xi MWl 1k, q)

i==11

+[V2 (i~ X9~ (L. oS= Y IN@. ) (@4 - 2)),
Bk ) = VZOG=XiM, ¥ Tl 0=—y2 (X=X Vil 1,6 9)
+ V2 ER= XD = (L, 1= IN@R ) (2, -2)),

where
X5 =<Sil%y,  N@Q) = (££2-1)71, (2.25)

and function I';, assumes the form

2
- (6+iA) (@ —wy +iD) . ]
T, = g (—1y ——Q# AR} (2.26)
q k+q
i=1
From the identity 1 3
1 .
¥ g (S2,STHEY > = Cixg, (2.27)
q
after substituting the explicit form of the correlation functions (2.23) and (2.24) we obtain
the set of equations for the correlation functions Xg, & = —1, 0, 1. Then we get
SISt = Xi—X;ih, (228)

and using (2.21) and (2.22)

Sk 8L = 2 [{Sk Loy +<Sp Lok 1. (2.29)

3. Thermodynamic properties

Now we can calculate the magnetization and the second moment of the z-component
of the spin vector. Using the formulas [4]

1+@_y+@

=== (31)
T+¢_1+2¢0+3000_,

g =

and

l+gp1—9o (2)
1+9 1 +2¢0+3@ep—,
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where functions ¢, are defined by (2.21) and (2.22). We get

1\ 1
o = ﬁzm[(gk“wo'f‘D)N(Qk) (Q2—wo+D)N(QD],

1 3 1
Py = 5 Z m [(@} — wo — D)N(Q}) — (F — o —D)N(QJ)]- 3.3)

To calculate T, we use the method given in [9] expanding the expressions for ¢ and 4
with respect to o,

o =|UP)— 4@ :|a+0(02) (3.4)
| 1+3U(B) : '
where
" ~/D?-22DJ,
U
o Z N, D2 —-2ADJk 2 i
, B/D?=24DJ,
V(p) = U(ﬁ)-l— — Z( +2J5— Jk> cosech S
2 ——
+ 1 oD h MJ’-‘ . (3.5)
J D>—2iDJ; 2

Now we can use the expression

- _4 2
S e +0(c?), (3.6)

D
which enables us to write down for the. case o <1
4]

D i
— = - 4+2J,4+3D, (3.7
Aox
and
kT D
—I(Y)=%- Y, 3.8
7. (Y) A (3.8)
where
1 D 1 1
—=—, KY)=—= ) (3.9)
Y 2J44 N 1 Ji

Y 7,
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Equation (3.8) enables us to calculate the magnetic susceptibility and the temperature

of the phase transition
| 47, J34 [ D\ ] 3.3
kT, = 14+ —f— +...], A= ——, s.c 3.10
31(1).[ 21(1) (%) V2 S

. o
Above the transition point, when o = 0and 2 =0, = — X the transverse correlation

function calculated in (2.29) takes on the form

: .
2 (3.11)

and within the long-range limit alk| < 1 (simple cubic lattice)

(Spsty = K _m (3.12)
Joa® 1+« |k

where :
R 132 B 3.13

= ] . )

K_L 6 2%-]0 8 JO ( )

In a paramagnetic region the function of longitudinal correlations (2.28) equals

I(Y) [3 1 3, }
—__ F(Y,k)
(3.14)

287, |2 2D D*YR
1 3F(Y,k)

&3a3 N
{SpSZpy = 1 3R B) - (i 70 )
2DpY? My - To][ﬁ + DZYZﬁZ:l

1 1
FY.,k) =— E - — . 3.15
(. 5 N I Jeeg |1 Jr (3.15)
e A || SR
: D . o .
For the case of small — and in the long-range limit the function (3.14) reduces to the
4]

Ornstein-Zernicke form
6kT Kﬁ
(3.16)

Sist ey = —
SiS=w 2Joa® 1+xi|k|?
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with' correlation length
2 a’[ 177"
Kj=—|—| - 3.17

At the phase transition point the longitudinal correlation function (3.16) approaches
finite value and the correlation length is divergent.
The magnetic susceptibility near the critical point (3.8) assumes various values depen-

"

. D -t .
ding on the value of the parameter o The critical index y depends on this parameter
Jo

a(mn

ar - )

¥

1 1 I
o7 05

— /1) ————

D .
Fig. 1. Specific heat as a function of temperature for 5 = 0.1, (@) is our result and (b) is the result of

Tanaka and Tani

too (Fig. 3) and rapidly approaches its limiting value of 2 at D — 0. It is worthwhile to
mention that such kind of behaviour of critical indices with change of the Hamiltonian
symmetry class (from spherical to axial, # = 0) is referred to as the smoothness hypothesis
or smoothness postulate [10].
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Fig. 2. Energy as a function of temperature. Curves (@) and (b) are for a = 0.1, (¢) and (d) for — = 0.01.

Curves (a) and (¢) are our results and () and (d) are results of Tanaka and Tani
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4. Discussion

Tanaka and Tani [1] have already calculated the longitudinal correlation function
(§38%,> for the system described by the Hamiltonian (2.1). They employed then the
method of Green’s causal functions in combination with Kubo’s method of linear reaction
[11]. For anisotropic Green’s functions, i. e. those occurring at the parameter D, the
Narath [12] decoupling procedure was employed

SFSI+S3S7|4,) ~ 2{S3y (ST 1A,

This procedure, however, neglects very substantial and strong single-site correlations.
For such an approximation magnetization as well as Curie temperature exhibit several
anomalous features. Magnetization ¢/J = 0) # 0 and lim T (D) = 0. Moreover the

D-oo

basic sum rtule [13} does not hold neither in the paramagnetic nor in the ferromagnetic
region. We have corrected Tanaka and Tani’s results without decoupling of the single-site
Green functions and taking into consideration the anisotropy of crystalline field in equa-
tions of motion of Green functions (2.8) and (2.9). We calculated the longitudinal and
transverse correlation functions applying the modified Ishikawa and Oguchi method [4].
However, this method pefmittéd one only to calculate the static longitudmal and dynamic
transverse correlation functions (2.28), (2.29). Both of these functions in a long-range
limit assume the Ornstein-Zernicke form (3.12) and (3.16). Moreover in both cases equal
correlation lengths behave in a different manner near the phase transition point and the
principal sum rule in the ferromagnetic region

1 A
N Z (SES2y+{SiSZp) = S(S+1),
k

is also not fulfilled. We could not, however, verify this rule in the ferromagnetic region
due to a very complicated form of the longitudinal correlation functions (2.28) or (3.14).
It can be easily proved that the phase transition temperature defined for arbitrary D by
the formula (3.4) is finite as D — oo and the magnetization also tends to zero at J — 0.

D .
The magnetic susceptibility at T' = T, is divergent for every ) but its behaviour for
o

D

various A < 1is different, which reflect in a rapid change of the critical index y (Fig. 3),
4]

supporting the smoothness hypothesis (a symmetry of the Hamiltonian (2.1) turns at

D — 0 from the axial to spherical one). An explicit form of the correlation functions
permitted one to calculate the temperature dependences of

E=<H), T>T,

oE D ,
and specific heat C(T) = T for various — (Fig. 1 and Fig. 2). The specific heat

0T |4=o 0
value near T, derived from (3.11) and (3.14) is higher than that obtained by Tanaka and
Tani [1].



77

The author is indebted to Professor A. Pawlikowski and Dr W. Borgiet for valuable
discussions in the course of writting this paper and to J. Zerda for the numerical processing
of theoretical results.

REFERENCES

{1} H. Tanaka, K. Tani, Progr. Theor. Phys. 41, 590 (1969); K. Tani, H. Tanaka, Phys. Lett. 27A,
25 (1968); J. F. Devlin, Phys. Rev. B4, 136 (1971); S. B. Haley, P. Erdos, Phys. Rev. B5, 1106
(1972).

{21 D. N. Zubarev, Usp. Fiz. Nauk T1, 71 (1960).

{3] B. Westwanski, Reports JINR E4-7624, E4-7625, Dubna 1973.

141 J. Czakon, Acta Phys. Pol. A53, 57 (1978).

{51 T. Ishikawa, T. Oguchi, Progr. Theor. Phys. 50, 807 (1973).

[6] A. Royer, Phys. Rev. A6, 1741 (1972).

{7] For example see V. N. Kashteyev, Ferromagnetizm pri vysokikh temperaturakh, Zinatne, Riga
1973 (in Russian).

{81 W. Borgiel, J. Czakon, Acta Phys. Pol. A44, 373 (1973).

[9]1 M. Tanaka, Y. Kondo, Progr. Theor. Phys. 48, 1815 (1972); 50, 708 (1973).

{10] R. B. Griffiths, Phys. Rev. Lett. 24, 1479 (1970).

[11] R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).

{12] A. Narath, Phys. Rev. 140A, 854 (1965).

{13] For example see S. H. Liu, D. B. Siano, Phys. Rev. 164, 697 (1967).



