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A general prescription for constructing completely integrable one-dimensional systems
of N interacting particles is found. It appears that within this approach the only integrable
potential for systems of particles interacting with first- or’second 'neighbours'is given by the
exponential function. The integrability conditions for systems of particles 1nteract1ng with

. each other lead to a functional-differential equation for the potential, with Weierstrass function
as the most general solutlons The complete mtegrablhty of all c0n51dered systems is proved.

1. Introduction

The integrability of Hamiltonian systems is an exceptional property. As is well known;
the problem of N bodies is non-integrable for N = 3. Even in one dimension a system of
N particles interacting on a line or circle can be integrated completely only for some
special interacting potentlals Therefore it is not surprising that the efforts of mathema-
ticians of the nineteenth century ‘succeded in integrating explicitly only some classical
cases, and then. progress stopped. Poincare was the first ‘to show that most Hamiltonian
systems are nonintegrable. This conclusion .turned investigations ‘in classical mechanics
into another direction, i. e. approximate methods and stability problems:

But the knowledge of integrable cases is still very useful for many purposes. Approxi-
mation techniques can be tested by examining exact solutions. Moreover, every solvable
N-body_model improves our understaniding of classical statistical mechanics.

" New possibilities for finding integrable systems have arisen quite recently. They happen
to be closely related to the -discovery by Kruskal and-other authors [1] of the strongly
stable wave solutions, the so-called'solitons, for the Korteweg-de Vries equation and other
special nonlinear wave equations (Sine-Gordon, modified Korteweg-de Vries and non-
linear Schrodinger equation). It has been shown by Zakharov and Faddeev [2] that the
existence:of infinitely many: conservation laws for the K-dV ¢quation is closely related to
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its Hamiltonian structure. As was further explained, all the exceptional properties of
these nonlinear equations, particularly the existence of exact analytical solutions, are due
to the fact that these equations describe completely integrable Hamiltonian systems with
an infinite (continuum) number of degrees of freedom. Similarly, i [3, 4] the complete
integrability of the Toda lattice as a Hamiltonian system with infinite (countable) number
of degrees of freedom was proved by Flaschka and independently by Manakov. These
results made it possible to find some examples of completely ‘integrable systems. of
N(N-arbitrary) interacting particles on the line. The best known is the finite Toda lattice
and other ones are given by Moser [5} and Calogero [6].

Below, only Hamiltonian systems-with a finite number of degree of freedom will be
investigated. Starting from the particular results in [3, 5, 6], some general integrability
conditions are formulated and some new completely integrable systems are found.
The possibility of transition to infinite lattices and to problems of statistical mechanics
is open.

2. The notion of integfability

The notion of integrability is intuitive but nevertheless it is convenient to adopt
some rigorous definition. Let {4, B} denote the Poisson bracket of quantities 4 and B.
A quantity / is an'integral of a system with a given Hamiltonian H if {I, H} = 0. Further-
more, N functions Iy ; ..., Iy are said to be in involution if {f, I;} = O for every pair
(k, 1) where k,/=1,2,...,N. An adequate definition of integrability is based on the
following theorem of Liouville.

Theorem
I . . . oH
If for a Hamiltonian dynamical system with N degrees of .freedom ¢, = .
pi= — S i=1,..., N, there exist N univalent, functionally independent integrals
q;

Iy, ..., Iy in involution, then it is possible to construct N new integrals and the system
is integrable by quadratures. Therefore the appropriate definition of the complete integra~-
bility we set as below.

Definition

0H . 0H ) ,
—,pi=——,i=1, ..., N is called
op; 0q;

completely integrable if there exist N time independent univalent, functionally independent.
integrals in involution. Note that the assumptions of the Liouville theorem are strengthen.
by time independence of the integrals. For a better understanding of this definition, we:
outline here the proof of Liouville’s theorem (see [7] or [8]). The main task is to construct
a canonical transformation from ( ps q) to new generalized coordinates (8, o) such that the
dynamical equations trivialize to o, = 0, §, = 0. Let the quantities I(p, q,t) = oy be the
independent integrals in involution, {050}, = 0. Therefore they can be taken as new
generalized “position variables”. To determine new generalized momenta, it is convenient

The system of Hamiltonian equations q; =
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to construct a generating.function W(g, o, #). By the independence of I, the I,(p, g, 1) = .o,
can be resolved, leading to p, = f,(g, &, ¢). The generating function can now be introduced
according to

N N e
dW(Q5 &, t) = Zl prdqr_Hdt = ZI fr(Q9 o, t)d‘L-_H(q’f(Q3 o, t)’ t)dt‘

of, af, of, oH
The identities /, = /. and —j—’—

, oqs  0g, ot 0q, -
is in fact a complete differential (the computations are omitted). The canonical transfor-

mation corresponding to W(g, a, t) is given by

can be proved by confirming that " p,dg,— Hdt

il B w. H =H ow H-H =0 1 N
p, = 6q, 3 r aO(, b - S "a—t' e - = \p F=1,.m, V.
ow . . . . .
Here the fi, = — —— are generalized momenta. ‘As is obvious, the dynamical equations

r
in the new coordinates (f, ) are

=0, $=0 r=1,..,N

with solutions

oW(q, a,t
o, = const = fp, g, 1), B, = — (g %9 . const. 2.1)
“l’
.. oW(g, . t) . ! -
The quantities — — = f,are thus the new N independent integrals. Their independ-
: % ;
2
ency results from det a‘ # 0. It is essential that the f,, ..., By are obtained by
5 q" “S

quadratures. A phase trajectory of motion could be obtained by determining p(e, 5, 1)
and g(a, B, ¢) from (2.1). The existence of N integrals in involution is a very strong property
because it gives information about the global structure of the trajectories. Note that locally,
by the theorem asserting the existence and uniqueness of solutions of ordinary differential
equations, there exist 2N integrals Po»> go having the sense of the initial conditions for
p(®) = p(po, go, t) and q(t) = g(po, go, t)- But in general, they may not be given by quad-
ratures or they may not exist globally, and usually depend explicitly upon time.

3. Dynamical equations of completely integrable Hamiltonian systems

It is usually véry difficult to decide whether some given equations are completely
integrable. It is, however, possible to give a constructive prescription which allows one to
obtain a wide class of integrable systems. The right idea may be derived from the work
of Lax [9]. '

As is known from linear algebra, all the eigenvalues of the matrix are invariants of
the similarity transformations. This suggests that we limit consideration to the subclass
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of cases when the states (p, g) of the system in phase space can ‘be adequately described
by some matrices L, and time evolution of the system in given by the similarity trans-
formation

L) = KOLOK (@), 3.1
where )
K(t) K-l(t) =1 ' BN X))

Then all invariants of the matrix L(#) are.automatically mtegrals of the motion. To have
a sufficient number of, 1ndependent 1ntegrals it is reasonable. to assume that the matrix L
is in general diagonalizable for the assumptlon of other Jordan types would 1mp1y some
degeneration of invariants. Below, the dlagonahzablhty of L will be achieved by assuming
its herimicity. The equatlons for L(¢) can be obtained by differentiating (3.1) and (3.2)
with respect to 7. One has

(K™YLK+K 'LEK+K LK, =0, KK '+K(EK™ ), = 0.

Hence:
L= —-K(K Y)L-LKK™ ' = KK 'L—-LKK™*
Writing K,K~* = — 4, one obtains the evolution equation in the Lax form
. d '
;Z—tL = LA—AL = [L, A]. (3.3)

Here the one-paraméter family of opératoré K(7) satisfies the differential éQuation
= K = —AK. In particular, for L(¢) hermitian and K(¢) unitary, the matrix A(¢) is skew-
hermitian, i. e,

4% = ~(KK)* = KK} = KK* = 4,

These considerations suggest that Eq. (3.3) is adequate as a starting point for the construc-
tion of completely integrable systems. Let us now assume that Eq (3.3) is simultaneously
of Hamiltonian type. To find the hypothetlcal Hamiltonian, let us restrict our attention
to conservative systems. Then the Hamiltonian is an integral of motion, and so it can be
constructed from the invariants of the matrix L. What invariants can be used ? Here the
method of embodying. the Hamiltonian system into the.Lax system still admits some
ambiguity. The most natural possibility arises by assuming that L is constructed line-
arly from the momenta p and some functions of the coordinates.” In ‘the ﬁafural‘ cbordi-
nates the Hamiltonian is a bilinear form in the momenta. This implies that only the two
invariants of first and second order can be used, namely J,=TrLand J, = TrL , and
that the Hamiltonian should be

H = aJ+pJ,+y(J:)* with o, B,y real. - (3.4)
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The basic structural condition is that the Hamiltonian equations obtained from H

... OH 6H M
q; = ap; s D= 5(1. I =1, ..
should agree with (3.3). The above method of construcﬁng dynamical integrable systems
is useful not only in embodying the subcases of Hamiltonian mechanics, but it can also
be associated with other interesting evolution processes. For instance, in the work of
Moser [5] and Kac and van Moerbeke [10], non-Hamiltonian dynamics has been in-
vestigated for the so-called discrete Korteweg-de Vries equations (though it can be embedded
in the Hamiltonian system of the Toda lattice). Below we. apply this method in order to
study an N-point system in one space dimension. The concrete shape of the matrix L used
below is partly justified by general arguments, but the specific work of Flashka [3] and
Moser [5] is also very helpful.

4. Systems of particles interacting with nearest and next neighbours

The result is that in this class the only intégrable potential is the exponential function.
Among such systems the best known is the Toda. lattice with periodic boundary condi-
tion ([11-13]). In the possible modifications, the interactions with the next, the third and
even further neighbours could be taken into ‘account. But it seems that in al} cases the
potential should be exponential.

Let us examine N particles interacting on a circle with both its nearest neighbours by
the same potential. The positions of the particles are described by the x, variables mea-
suring the displacement of the n-th particle from equilibrium. Because none of the points
is distinguished from the others, the numeration can start from an arbitrary point. This
means that the matrix L describing a state of the system should be invariant under any
displacement of the numeration of points. This condition is ‘satisfied by the matrix L in
the form

| Pr iag; 0 .. 0 —iay; |
|
—ia12 pZ iL123 ‘e 0 ) ) O
0 —iay; ps
L=I| . . R 4.1)
| . [
|
iay-1,n
I,

“ldny 0 .. 0 -'—iaN_LN PN -

where p, are the momenta and @, ,, 4y = a(x;— X, 1) With a(x) a certain given real function.
Moreover it is clear why all the other matrix elements. are equal to zero, for there is no
interaction between distant points. For the above L matrix, now choose the Hamiltonian
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to be H =  Tr L?. This choice is general enough as the term TrL = ) p, commutes
i=1
with the Hamiltonian (3.4) and vanishes in the mass center coordinates. Henceforth we take

N N
H=71Tr I? = 1 Z PR+ Z a,ikﬂ,‘ with N+1 = 1(mod N) 4.2)
k=1 k=1 ‘ : : ‘
‘and the equations of motion. aré given by

. OH |
X = ™ = P> (4.3a)

B2 .

. oH , . ]
P = — 5};‘ = 2(T‘ak,k+1ak,k+1+ak—1,kak-1,k), k=1,..N, (4.3b)
L 0%, ;

where a'(x) means differentiation with respect to the argument. Furthermore, we note that

Grgr1 = Qe 1(Pe—DPrs 1) (4.30)

To identify the equations (4.3a, b, ¢) with those obtained from (3.3), it is convenient to
assume the skew-hermitian matrix 4 to be

Gy fiz 0 ... 0 fN;
fiz Gy fas 0
0 fis G |
A=il 3 " (4.4)
{.
10 Jr-1n
S 0. o Su-1n Gn
where fii+1 = f(x.— X+ ,). Here f(x) and G,(-) are given real functions. Then
P'k = 2(ak—1,kfk~1,k“ak,k+ g+ 1) (4.5a)
dk,k-i-!l = foer 1(Pe— Pic+ 1) + 1134 1(Grr 1 — G) (mOd N) (4.5b)
0 = appssfin+2—Sop+ 1tz (4.5¢)
"The choice Gy = const = 0 and
Jert1 = Gigrts (4.62)
0 = apr tfir+2— S+ 1%p+25 (4.6b)

ensures the consistency of Eqs (4.5a, b, ¢) and (4.3, b, ¢). By resolving (4.6a, b) one gets
@' (xp— X4 /(X — X4 ) = ¢ with the unique solution a(x,— X4 1) = & exp [c(ep—xp4 )]
where ¢, ¢ are real constants.This means that within this approach the exponential function
is the unique potential that makes the “circular system™ of N particles interacting with
nearest neighbours completely integrable.



655

A generalized system having interactions with' nearest and next neighbours can be
considered in a similar manner. Here'symmetry arguments suggest that we take the matrix
L in the form

Dy ia,, a3 0 ... —iday_y,; —iay
—ia ia 0 —i |
' 12 P2 23 —lany ||

iays —iay; D3 0

L= I , “.7
!
[

ay-1,1 iay_1,n|

| x5, iaNz o > 000 —iaN_l’N PN

where @, ;41 = a0 —Xi+1)> ez = bXx—xy42) and a(x), b(x) are some given real
functions (it is assumed that the interaction with nearest neighbours might be different
from-the interaction between the next ones). The Hamiltonian is

- N N
H=4Tr =% Y pi+ Y (@ixs1+aiks2) (mod N) (4.8)
k=1 k=1
and accordingly the Hamiltonian equations are. .
. oH
X = — = D, (49a)
! apk ) .
' I;k = 2(al,c~i,kak— Lk dllc,k+ 19k+1)+ 2(ay- 2,k8k~2,k— allc,k+ 2055+2)> (4.9b)
implying :
Gri+1 = al,c,k+ (Pe=Dr+1)s  drprz = al’c,k+2(pk_pk+2)' (4.90)

The matrix A is assumed to have the same form as previously but to be similarly enlarged
by an additional skew row above and under the diagonal, whose elements f; ;42> k42,
satisfy fi y+2 = fi+24 The resulting equations- (3.3) are

Pr = 2(@- 1S 1= Ot 1S+ 1) F 20— 20 Sk- 26— Vot 2.Sii+ 2)s (4.10a)
1 = fk,k+ {(Pe— P+ )+ s 1(Gr+1—Gy)
Fi[ (g1 fim 10 1 —Sik—19= 1,0+ O+ @it 2o v 2,041 'ffk,k+zak+2,k+ Ol (4.10b)

Grpv2 = fk,k+2(Pk—Pk+ 2D+ i(ak,k+ e+ 1,42 _fk,k+ 1ak+'1,k+ )iy 2(Grsr— Go)s
(4.10c)

0=iaguss = —ak,k+1fk+1,k+3_ak,k+2fk+2,k+3+fk,k+1ak,+ 1,k+3+fk,k+2ak+2,k+3’

(4.10d)

0 = idyrs = —ps2fir 24 ipt 200+ 2044 (4.10¢)
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The -compatibility conditions for (4.10a, b,¢,d, ) and (4.9a,b;¢) give us f,, = a;,
motivating the assumed form of 4. Furthermore (4.10) yields fi;, o/a, 54, = a;, Hz/a,, PP
= d = const and 80 a;;4+, = g€xp [a’(x,,—xk+ 2)] This reduces (4.10d) to:

By 1,0+ 3(dak i+ 1 Spr 1) = ak K+ Z(dak+2 k+3 _fk+2 K+ 3)

The solution is given by
Apgp+r1 = a(xy—Xg11) = [—dOgq—Xgr 1)+ h] exp [e(x— x4 1)],

with &, ¢, d, i real constants. For non-trivial constants ¢, d the inspection of purely
imaginary terms in Egs (4.10b, ¢) leads now to a contradiction. This means that assumed
system of points interacting non-trivially with nearest and next nelghbours is not integrable
by means of the variant of the Lax trick applied here. Nevertheless, the equations expressing
the interaction with the next neighbours only are solvable, and the potential is the ex-
ponential function as found previously. In that case the structure of the system essentially
depends upon the-parity of the number N.of points on the circle. For N even it splits
into two independently interacting Toda lattices. But for N odd all particles constitute one
joined system in which any particle interacts with its nearest neighbours through (N-3)/2
other intermediary particles. These systems have not been investigated yet.

5. Systems of particles interacting with each other

This class includes some potentials already investigated by Moser [4] and Calogero
[6] namely V(x;—x;) = 1/(x;—x)?, V(x;—x;) = 1/sin® (x;—x,), V(x;—x,) = 1/sh?*(x;—x)),
where x; denotes variable on the line or circle respectively. Their integrability has been
proved on the basis of concrete properties of the functions considered. The formulation
presented below states the problem more generally and prov1des a functional differential
equation for the potential.

Suppose N particles interact with each other through an identical potential depending
upon mutual distances. Material points are numbered from 1-to N and the numeration
does not change in time. The description of the system should be insensitive to any permu-
tation of numbers. This suggests the ch01ce of the followmg matnx L as it possesses
the required symmetry:

le iags iags . . . . ialN‘
\iazy p2 ;
ias, . .
L= . , _ (5.1)
HEC SR Py

where a;; = a(x;—x;) with a certain real function a(x). The hermicity of L, i.e. @+ @
= a(x; —x,) +a(x,,~x;) = 0 implies that the function a(x) is odd.
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One could think about a different: Lax algebraization of the system with the -more
general L. Here there would be no immediate conclusion about an odd parity of a(x).

The resulting Hamiltonian is
H=3Trl =%} pi+ ) g (5.2)

k=1 k,r
where Y’ denotes an independent summation of k and r excluding k = r. The Hamiltonian
r.k

equations are of the form

0H
X = — = Di ‘ (5.3a)
Opy
R . ‘ o N -
) oH ‘ ‘
== -2 ¥ vak;a,'”, (53b)
0%y,
ot
and consistently
iy = a(Pe—Dy). (5.30)

For these equations the matrix 4 should be assumed to be

"G1 Siz fis - - o - S
I[far Gy
A=i |5 ., 64
[ - i
]fm Gy |

where f;; = f(x;—x;) and f(x) is some real function. 'From the antihermicity of A4, the
function f(x) should satisfy the condition f{(x;—x;) = fi; = f;; = f(x;—x;) which means
that f(x) should be even. Eq. (3.3) leads to

N
15k = =2 z A frors (5.52)
it
g = fu(p—p)+i [er (@S~ Tw) + a(G,— Gy) 1. « (5.5b)
r#k,l . ‘

The system (5.3a, b, ¢) is consistent with (5.5a, b) if

fkr = aI,cr’ . (5.63)
. .

Y (i fu—futn)+auy(G,—Gy) = 0. (5_-6_b)

r=1
r#k,l
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So. we -arrive at the following functional-differential system of equations 1nvolv1ng both
a(x) and G(:) functions

N
Y (awan—apa,)+ay(G—Gy) = 0. (5.7a)
r=1
Pk,

If a(x) # O this is equivalent to
N
21 LG —x)a'(x, — x) — a'(Ge — x,)ax, — x)]/a(x—x)+(G,— G) = 0 (5.7b)

for all pairs &,/ = 1, ..., N; k # . The functions G, = Gi(x; ..., xy) can be arbitrarily
chosen to satisfy (5.7b). It may seem that the number (N(N—1)/2) of equations for a,
is somewhat abundant. In fact, (5.7) can be resolved with respect to G, only for certain
special functions a(x). Here the odd parity of a(x) is essential. The form of Egs. (5.7)
suggests that the function a(x), which makes the whole structure solvable, should fulfill
some law similar to the addition theorem.

An important class of solutions can be obtained under the asumption that every
term of (5.7b) splits into the difference of two identical functions dependmg upon different
arguments; that is,

a(xe—x,)a'(x,— X)) — a'(xe — x,)a(x. — x,)

- = f(xi—x) = f(x,— x). (5.8)
a(x,—x;)

Then G,, in the form

Gy = Zlf(xk—xr)_r (5.9)

r#k

satisfies the system of Eqs. (5.7b). If, moreover, a(x) is assumed to be of odd parity, then
(5.8) reduces to the functional-differential equation

a(x)a’(y) —a'(x)a(y)

oy =T, (5.10)

which was also investigated (independently but a bit earlier) by Calogero [14]. The
function f(x) in Eq. (5.10) should be appropriately chosen for every solution a(x).
There are known several solutions a(x).of Eq. (5.10) namely
(#) 1/x —in the class of rational functions,
(i7) 1/sin (x), ctg (x), 1/sh (x), cth (x) — in the class of simply periodic functions,
(#if) 1/sn (x), en(x)/sn(x), dn(x)/sn (x), cn (x)/sn(x)dn(x), cn(x)dn(x)/sn (x), dn(x)/sn(x)cn(x),
—— in the class of doubly periodic functions.
All these solutions are equivalent in the sense that they yield the same potential, the
Weierstrass function £ (ax|w, »’) [15]. So, instead of asking for the most general solution
of (5.8), it is reasonable, at least from a physical point of view, to look for the most general
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even potential generated by .the equality V(x) = a*(x). Adding all Egs. (5.8) corre-
sponding to all permutations of (k,r, 1), we have

ol ) (5~ ) = Gy =¥~ ) | aCh— W) (5i=%)

a(x—x,) | ale,—x)

| dlammatn—) | aln—x)a (= x) = a (= x)als =)

‘er—xz) a(x;— xi)

=0 (5.11)

and therefore the equation for potential is
[PV 3~V VO T+[VOWV (@) =V V@1+ [V V') -V @V ()] = 0
’ (5.12)

with x+y+z = (x—x)+ (x,—x)+ 00 —x) — 0. But this equation is nothing other
than the addition formula

|1 V(x) » V'(x) !‘
det |1 V() Vi(y) | =0
1 VG V)

for the Weierstrass function P(ax|w, @'). It is known that this formula determines the
even function ¥ up to a multiplying constant. Notify that for N = 3 the equation (5.11)
is the straightforward result of the (5.7b) without the restricting assumption made in (5.8).
Therefore for the system of particles interacting with each other the most general potential
integrable within this approach and independent of number of particles is given by the
Weierstrass function.

6. Integrals of motion, involutivity

The basic assumption for the whole class of problems investigated here was that the
eigenvalues (generally invariants) of L are the integrals of motion. Now it is necessary
to answer the question whether they are functionally independent and in involution; that
is whether they constitute a fundamental set of integrals for the completely integrable
systems. The independency of the integrals results in a simple manner from the sets of
integrals other than eigenvalues, but the proof of involutivity is not so trivial. '

Sets of integrals usually considered are J, = Tr L” or the coefficients K, in the charac-

teristic polynomial
N
det [—Ly+43;] = (+H)'— ¥ K(+D"™
n=1

It is known that K, are sums of all principal minors of the n-th order, and that they are
connected with J, by the Newton formula

nk, =“AJ,.—K1J'}.—1_ e = Kaoydoe
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The functional independence of the K, results from the fact that in. every principal minor
of n-th order there exists one term of the form Piy - Dy, Where i;... i, are the numbers
of the rows included in that minor. Then every invariant can be written in the form

K, = D Pi, X ... X pin+(terms 'depending upon ea(*)),
1gi<ia< ... <ipgN

where every matrix element is given as a, ; = ga(x;~x;). Note that substitution of ¢ does
not influence any properties of the matrices considered in the previous paragraphs. There-
fore, if some general relation existed between all the K, it would exist in particular for
& = 0. But in that case K, reduces to the symmetric polynomials of order # of the momenta,
which are independent. B o me i

Now, in a way similar to Sawada and Kotera [16], we define here another, third set
of integrals I,. For this set of integrals we prove involutivity. _ v

‘Let the integrals which are highest in Py be given by the ‘expressions

‘ 6 07
I = _‘1‘ V iTTA T — H N
N exp[ 28 E (xi=x)) o7, 6p,] P

Lj
N

1 N\ * ! 0 )
Iy =exp| —7¢ V(xi_xi+1)ahp_ op: Iip,
L 1 i l+.1 ‘
N
oG " A [ . . N 6 - a = .
Iy = exp l:"‘%? Z V(?Ci*xi+2) 5 o ]Hp, " (6.1)-
. S o = Fi i+2

for systems (5.2), (4.2) and (4.8) respectively, where Ip = pyXp,y ... py. These - quantities

are well defined (because the number of terms is finite), completely symmetric N-th

order functions of p,. Moreover, it is easily seen that Iy are translation invariant, i.e.

{3 i Iy} = 0. But the proof that Iy are the first integrals i.e. that {H, I;} = 0, involves
k . ] 997 o

more computations and will be given at the end. The usual Poisson bracket is denoted here
N

, Nos or  er oS T -l
by {S;T} = » — ——— = " Allthe other integrals I, are defined inductively:
4 Opr Ox,  Op, Ox,
r=1 0 > B . -
in the following way

N .

‘ In—-; = {In’ Z xk}“
k=1
Then, by virtue of the Jacobi identities,

A G B ) 0 (S B LS 5 ) =0,

N

(2,20l 2, 50400 (5 350 5 2+ ( 5, 50 (5 5yt =0

1
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and the equality
N N
{2 X, Hy = — Z p;y
kL T

finite induction arguments indicate that the I, are in fact translationally invariant integrals.
Furthermore, they are completely symmetric n-th order functions of p,, which guarantees

functional independence of I,. It can be observed that the-operators 0= —a— and
' . P -
o N
i o 0 [ o 0
D=) V(xi'—Ax‘)'_—' __‘(D = Z V(xi-—xi - )—‘- — or
! Z Topyops\ . L 1 op; Opies
R 1] . R . i=1 . &7
N
D= VoS CRg el
= Xi—Xiy0) respectiv
e _1 R ‘f‘z“api/ Opiva Loy e‘y"-

commute, and as a consequence,
L N

v N: B a R N-— +1’ ’
I,y = .{Im Z xk} = (z 5;) I, = (a)In = (0) " Iy. -

Thus we can now examine the quantity {I,, I,}. This is certainly the integral of motion
that might be independent of I,. But, by the functional independency of I, the equalities
I(p, x) = &, = const (x stands for the concrete value of each integral I,) can be resolved,
leading to p; = g(x, ®). So the quantities {,, I,} can be expressed as'

{Ims In} = Gmn(ps X) = :an(Il‘, ey INa JC). , ) (6‘2)

1t is important here thatb in such a new ifltégral F,, the momenta are included through
the old integrals I,. Therefore the application of 9 to both sides of (6.2) yields

I_ I} {1} = " (I,) = e 6.3
{Tp-1, L} +{ 1}‘. Z 6Ik( 9] Z oI, k-1 (6.3)

k=1 ‘ ' k=1

Now, by finite induction, it is easy to justify that F,,(Iy, ..., Iy, x) = 0. Let us assume
that all the Poisson brackets {/,, I} of order r+s =m+n—1 vanish. Then the left-hand

) ‘ a mn . .
side of (6.3) vanishes, and the independency of I, implies that . i = 0. This means
that the integral F(I1, ---» Iys %) = Fp,(x) could only depend upon the position coordinates.

But, from the independency of p, and the form of the Hamiltonians (5.2), (4.8) and (4.2),

it immediately follows that ——
5 t 0x %

= 0. An _app.ropria'te choice of (p, x) easily sl}ox;v's that
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the constant F,, has to be zero. Lastly, it is obvious that {1, I,} = 0 what proves the
involutivity of 7. - .

Now it is easy to notify that this proof depends not on special choice of the integrals 7,

but on its recurrent structure. Integrals J, also exhibit the same recurrent property
0Jy=NTrL'"Y0L) = NTrI¥ ' = NJ,_,

because 0L = identity matrix for all already considered systems. Therefore by virtue of

preceding arguments integrals J, (and K, as well) are in involution too.

It would seem that the procedure introduced here proves additionally that I, are
integrals, and that there is no need to verify the identity {H, Iy} = 0. If this were true,
it would mean that the involutivity of Z, is only a property of matrix Z and not a property
of a particular potential V(x), so that-all even potentials are integrable. This is obviously
false because in fact we have earlier used the property that F,, (7., ..., 1) is the integral
of H.

To complete this proof it is necessary to show that {#, I} = 0. We will do it for the
systems (5.2). Computation for systems (4.2) and (4.8) as very similar are ommited. Let
us now examine the first term of

N N N N
) 0H oI oIy oH oIy oIy 6H
Hj= ) ———=— ) —Lo—a ¥ p 0N 20 (64)
Opy 0%, Opy 0%, 0x,, 0p. .0x;
k=1 k=1 . T = =7 .
Then, for a single n-th component of the exp‘onehtial Iy, we have
- ) . ] _
z : d\ (1 z :’ d 0
1 nnh s ? _ oS
< Py &;) {;l—' 7 8)"D } Ip = —¢ V(% xl)pk s Op;
k=1 kI .
1 1 an—1pe—1{1r. ' .0 o 1 P
1 an Dn H = V; - il . 1. an 1 H,
{n—1)1 78) } p=¢ E (% xl)apkplap,{(‘—n—l)!( 7 8) Ip

k1

where the prime denotes differentiation with respect to the argument. In the second term
of (6.4) the (n—1)-th component of Iy gives

Z' o 1 1
/ 1l an—1inpr—-1
g V-(xk——x,)a—pk{(n_l)! 7€) D‘ }Hp.

Kl

Now, adding in (6.4) the terms corresponing to the same power of &, we obtain

— 1 —Llan-1 L _> _6_ . 0 n—1
s(n——l)! 2 8) Z .V(xk xl) apk (1 D 5;) {D . }HP- (65)

k,l

The only non—vanishing terms in (6.5) are those in D"~ Ip for which p, is present and p,
is absent. Let us assume (without loss of generality) that differentiation with respect to y 2
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appears in the left factor of D x (D" ?IIp). Then this facter can ‘be'rewritten in the form

N
Y B z .
[V (x;=%p) + V(x,,—%)] — = +(nonessential termis),
. Zl 0p1 OPw - -

and, with accuracy to a constant factor, expression (6.5) yields

z' ) o 8 o __
g V' (= x) [V — %) + V(X —x)] 37, 37, 5., D" 'p (6.6)
k 1 m P

k,d,m
where )’ means independent summation of all k, /, m excluding triples with k = [ or

k,l,m

k = m or | = m. By permuting k, /, adding and multiplying by %, (6.6) becomes

: o 0 0
V(= x) V(= X) = V(X = X)) — 7= — Dn_lﬂp- (6.7)
Z: ¢ Opy Op; Opn
. 6 4 0 . .
Note here that for fixed (k, /, m) the facor —- — —— is multiplied by
P OP1 Opm

V' (%= %) [V(X— %) = V(X — x) ]+ V' (2= %) [V (X —X)
~V(x— xl)] + V(% —%) [V(xk —x)—V(x— xm):'

which vanishes by virtue of Eq. (5.11) and the identity (x,—x))+ (x;— X))+ (x,,— %) = 0.
Thus every term labelled by &” (n arbitrary) is equal to zero, and consequently {H, Iy} = 0.
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