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ANTICROSSING EFFECT IN THE CASE OF LEVELS WITH
DIFFERENT WIDTHS

By T. DOHNALIK
Institute of Physics, Jagellonian University, Cracow*
( Received September 15, 1977)

The anticrossing of levels with different widths in resolvent formalism is described.
One of the obtained results is the general expression for the anticrossing resonance width
and the possibility of narrowing the resonance curve by an additional coupling between the
levels is shown. This result has been tested experimentally.

1. Introduction

The anticrossing method is often used for fine structure and for the Lamb shift deter-
mination of hydrogenic atoms (see for example Beyer, Kleinpoppen 1977, Beyer 1977).
If the crossing levels with opposite parities are mixed by a static electric field we obtain,
due to anticrossing effect, the signal called Stark mixing signal.

A theory of the effect given by Wieder and Eck (1967) was generalized by Glass-
Maujean and Descoubes (1972) for the case in which the crossing levels were coupled
through the intermediate level. In the latter theory calculations were performed by solving
the evolution equation for density operator describing three coupled levels. Such an
approach is correct and it allows one to calculate properly all possible signals, e. g. total
intensity of fluorescent light, the degree of polarization, coherent effects. However, the
results obtained in such a way are very complicated and it is impossible to take into
account (because of complicated calculation) the influence of several other levels which
take part in the experimental results. In both theories, which we mentioned above, the
coupling of studied levels with the other fine structure levels may be introduced by a
global correction of the levels energy calculatedf‘in the second order of perturbation theory.
Such a procedure does not include all aspeéfs of level coupling with different energies
and widths. In this situation an attempt was made to describe the anticrossing of levels
with different widths in resolvent formalism allowing one to get very simple formulas,
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easy to interpret. This formalism has been tested in several situations in which it was
possible to find a new, important property of anticrossings. In some other cases it does
not give a proper description of anticrossing effect.

2. The principles of theoretical approach (see e. g. Messiah 1964)

We consider the two levels |a) and |b) belonging to an effective Hamiltonian which
takes into account the finite lifetime (e. g. radiative lifetime) of |a) and |b) states.

Let us call this Hamiltonian #,. The |a) and |b) levels have the energies E,, E,
and widths I',, I',, and they cross each other for the E, value of the energy. The other
levels [¢), |d), ... have the energies E,, E, ... and widths I',, I'y, ... The levels may ke
coupled through some perturbation which we describe by shift operator R. We distin-
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Fig. 1. The diagram of the considered levels and the used symbols

guish the |a), |b> levels from the others using projective operators P = |a) {a|+|b) {b|
and Q = |¢) {c|+ |d) {d|+... This separation has a physical meaning when some condi-
tions are fulfilled: the coupling between levels |¢) and |b) should be, thanks to their
close energies E, and E;, much stronger than the coupling between |2y and [c), |d) ...
and between |b) and |c), |d) ... It means that P, > P, Py, wWhere P, is the tran-
sition probability between the levels |a) and [b) and, respectively, P, etc.

Let G,g, Gy Gop be the matrix elements of resolvent G. They are obtained from the
PGP ones given by formula:

PGP = 41-—: ‘
z—P#P—R

The matrix element of the evolution operator U(¢) is related to G matrix elements

hy formula:

@2.1)

H
PU(NF = — j ¢ = PG(2)Pdz, (2.2)
2mi
Cs
where the path C; is shown by Fig. 2 and &, and &_ are the poles of the resolvent.
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Let us assume that at the moment ¢ = 0 we excite the system to the level [a> and
at the moment ¢ the state of system is |y(¢)> = U(#)|e). The probability of transition
from the state |a) to |b) given by P, (¢) = <{b|v(®)) {w(t)|b> equals

Py(t) = <bIU®) |a><alUY(#) b) = [Ugl*. - @23

Fig. 2

We call the term
Ca() = Calp(D)y (w0 by = <alU(®) |ay <a]UY2) by = U, U, (2.4

the coherence between the states |a) and |5). Both these terms: transition probability and
coherence between states |¢) and [b) influence the intensity of light emitted from these
states and may be observed experimentally. The effect of the P,, term is observed when
the levels |a) and |b) have different populations and the resonance in probability changes
them. It may also give rise to a change of the polarization of emitted light in a given
direction. :

In order to observe the coherence C,, we should have both states coherent excitation
and the so-called coherent observation: that means that the observed light should be
emitted from both states and give an interference term different from zero. Now, without
going into details of the R operator structure let us assume that it does not depend on
z and that we know the poles of resolvent &, and &_ which may have complex values

e
éo_,_ = E+—l—5‘
I
éa._ S E_—iT. (2.5)

Let us evaluate the transition probability and coherence between the states |a) and
|6>. Using the formulae given by Cohen-Tannoudji (1968) we get

Rab Rab

o = = - = .
" (z2=6,~R,) (z—8,—Ry)—RpRyy (2—&.) (z—E_)

(2.6)

Evaluating U,,(¢) and Uy(¢) we get P, (¢). Assuming the excitation at the moment 7 = 0
and observation after very long time at ¢t = oo we have to calculate in fact

Pab =N j Pab(t)dt5 (27)
0
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which is the time average of the so obtained value, where N is a normalization constant.
After evaluating it gives

NIR*(I+ +1-)

ab = - - 7= -
r,r. [(E+—E_)2+ (1_};1‘-) }

We can calculate the coherence C,;, created by interaction R between the states |a> and |b)
in a similar way under the same assumption that at ¢ = O the system is excited to the
state |a):

P (2.8)

. NRE 1 T
Cab = — — ba%_ 2 2 B E+""Eb+ib——+
“\2 F__F+ F+ 2
(E.—E.)
2
I,—T N
+ (e +.Fb—F->' EaCis MR (2.9)
—\E-— i = = : ——l , .
r_ b 2 ] o n I_+T,
B ~E_ )+ —— (E_—E.)+

We see that both quantities have a resonant character with respect to the difference
E,—-E..

¥

3. The form of R
The expansion of R has the form:

Q VP+PVZQ -2 _pry .. (3.1

—%0 Z—‘e#o

R = PVP+PV

z—Jly

where V is the perturbing term which mixes states of ;. We will consider this expan-
sion for some specific cases.

3.1. The levels |¢) and |b)> are coupled only to each other. Then R, = V,, and

Raa = Rbb = 0.
3.2. The levels |a) and {b) are di;ectly coupled to each other and also to the levels
led, |d) ...

Now R,, = V,, and it is independent of z, whilst

” Z {alVIp)l?
R, = M +terms of higher order,
z—&,
v

where y denotes one of the levels |¢), |d) ... R is a very weak perturbation, therefore only
the z range values very close to &, and &, influence the value of the integral over the C.
path which we calculate for obtaining P,;, and C,. We do not make a big mistake in
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putting &, instead of z.in the element R. It is possible to prove that this intuitive choice
is really correct. The results obtained by this method are the same as those of Dupont-
-Roc (1973). In his calculation R depends on z by expansion in power series in which all
terms starting from the third are cut. Finally we assume

KalVipyP* mwmﬁ };w nmwwmﬁ
Ea=&y (E,~E,)

i
|

i

=p - 3.2
Foa D Upa ( )
and similarly
— [<biVIp)I? i
Ry, ~ - S = — Uy, 3.3)
bb = 8—¢, Fop 2 Upp (3.3)

o 7
3.3. The levels [a) and |b) are not directly coupled, but are coupled through the level |¢)
and additionally they are coupled with the levels |d), |e) ... The matrix elements R,.
and R,; are the same as in 3.2 while R, in the lowest order is -
- alVic) {c|Vib
z, _ <alVio> vipy e
z—8,
We may, as in the previous case, put for z values close to €, and &, The best substitu-
tion for the real part of energy is, of course, the crossing energy E, of both levels. The
imaginary parts of energies are always different and it is impossible to find their common

T : .
value. Let us put &, = E,—i 70 for z, remembering that I’y should have a value be-

tween I', and I',. Further, we will show that in the cases interesting for us we may omit
the effects for which the choice of I'y is important. Such effects cannot be described by
the formalism for I', # I', discussed in this paper.

We can imagine many other ways of coupling the ‘|a> and [b) levels e.g. they are
not coupled directly but through two levels |¢) and |d). R, and R;;, do not change in
that case and R,, may be easily evaluated from the general formula (3.1).

4. Evaluating & and &_

In order to find the values of &, and &_ we have to find the poles of the denominator
in equation (2.6) by solving the equation

(Z - éaa —'R-aa) (Z éab _Rbb) Rba ab — = 0. (4 1)
We put:

r - = .
Z=E—i?’ Ea ='Ea+raa5 Eb=Eb+rbb> Fa=Fa+uaa’

fb‘ == Fb+ubb (4.2)
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and separate real and imaginary parts in the obtained solution.. Putting

E,+E F+T
x=E- = b, y=I- “2 g (4.3)

we obtain the system of equations:

S e
4x2—y2 = 4Re(RbaRab)+(Ea_Eb)2—< 5 b)',

U e o s
= 1(E,~E) ? —1m (RpRo) (4.4)

which have two solutions

E,+E, F+T
A R Ll R (4.5)

E =
= D o)

We shall not write in details the very complicated form of E. and I'y since the rela-
tions obtained and given above are satisfactory for eliminating them. from the for-
mulas for P, and C,.

5. The discussion of properties of P
Putting into formula for P, the relations obtained above it is easy to see that
NIRRT+
[ (T (10 R
+2E,—E,) (F —I;) Im (RabRba) 4[Im (R5R;0)]°
.1

&
|

5.1. The case of the two levels |a) and |b) coupled only to each other.
Taking the advantage of the discussed in 3.1 form of R we see that V, Vi, = |Val?
hence Re (VoVia) = |Vap|? and Im(V,,Vy,) = 0. It gives

NV, (T 4+ )
ab

i TtT\ 4%12) '
r.T,| (E,—E)*+ 1
~ a b[( va b) + ( 2 )( + Farb

The populations of the levels become equal in the centre of the resonance when E, = E,

ol

(5.2)

1 . — :
for V> I',, Ty, it means = (1—Py) = —I]:— P,,. Finally, we find N =TI, and
b

a

_ Wl 2T+ T
B = Vol Tat T) 50

[(E —E)+ (F +F”) (1 4}',1/‘;’11 )]
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It is easy to find the relation between the change of intensity of polarized light emitted
from the levels |¢) and [b) and the calculated probability. We get the result obtained
previously by other methods (Wieder, Eck 1967, Glass-Maujean, Descoubes 1971). The
resonance broadens proportionally to |V,,|2, but its position is not shifted.
5.2. The levels |a) and [b) are directly coupled to each other and also to the levels
e, |d) ...

Now R,, # 0, Ry, # 0, and R, is equal to V,, as in the previous case and has the
same properties. The final form of the formula is obtained including a normalization
constant calculated in 5.1.

P Vo AT g+ thgq+ Ty + thyy)
Pop = ———— —

' : 4!Vb[2- ‘
(Fatttg)) | (BEa—Ep+7oa—rus) +4 Tatthgg+ Tptup) | 1+ — S
)[( | b+ Taa—Ten) +7 (Lot b+ Up) (ot u,) (Tt tiyy)

5.4

All properties of the resonance are seen after putting an explicit form of t,,, Uy, 7og Fope
The broadening of the resonance is still practically proportional to |V|? but in the same
time the position of the center of the resonance changes by (r,,—r3,) Which is also pro-
portional to the second power of V. An asymmetry appears in the shape of the resonance
which is due to the lack of symmetry of E,—E, and E,—E, in the denominators of u,,,
Upps Yaas Top- A more detailed discussion of the broadening of resonance will be given
in Chapter 7.
5.3. The levels |a) and |b) are not coupled directly but through the level |c) and additionally
they are coupled with the levels |d), | ...

To obtain the properties of resonance we should calculate Re(R,,Ry,) and Im (R,R;,).
An accurate form of R is given in 3.3. It is easy to evaluate that

= 5= II/acllebch 2
Re (R,R,) ~ b — R, 5.
e (RypRy0) (Eo-'—Ec)z | Ry (5.5

The term (I, —I",)*> ~ 10> (MHz)? is neglected in comparison with (E, —E,)*> ~ 106(MHz)?
in the denominator. After such an approximation we get also

FO——FC

s Rl (5.6)
o c

Im (RR;,) ~

Now, we can write an explicit formula for £,,. From the relation describing Im (R,,R,,)
we see that it is very small and the term [Im (R,,R,,)]* may be omitted. The term (E,— E,)
(F,~T'}) Im (R,R,,) gives the shift and broadening of the resonance. The value of the
La=L ) o—T)
_ , (Eo—E,)

with the width of resonance ~(I',+1I) and with the shift due to R,, and R, this term

latter.is proportional to (I',—I) Im (R,R,,) = IR ). In comparison
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is usually very small and we also neglect it'. As a conclusion of 'the above given dis-
cussion we may rewrite the formula describing P, in analogical form-as in 5.2, but we
put: |R,,|? in place of |V,,|2. This changes radically the properties. of the resonance since
its amplitude and broadening depend now on |V,,|%, while the shift of the resonance
still depends on ¥, to the sécond power. The formula (5 1) is easy to generalize for other,
more complicated cases of levels coupling.

6. The properties of Cy

As in the previous case of probability we will discuss the properties of the term
describing the coherence introduced into the levels system by their coupling. In order
to observe an effect belonging to the coherence between the levels we should be able to
detect simultaneously the light emitted from both levels in a way which allows interference
of its components. If we observe, as we do in all interesting experiments, the anti-
crossings of fine structure levels coupled by an electric field, the above condition introduces
the selection rule 4/ = 2 of studied levels. Such levels can be coupled only through one
intermediate level because an electric field couples the levels with A4/ = 1. Hence, the only
interesting case is 3.3. Neglecting, as in the case of probability, an effect belongmg to the
imaginary part of R,,R,,, we obtain

R | FE,~ B+ 2 (F+ 1) |
ab a\tg— Lp i _(Fa+rb)

I NZI [,+r, IRl
“h’m+<2>(lrmﬂ

The signal depends on the second power of ¥ and has both the dispersion and absorption
parts whose widths and shifts of the center depend on V2, similarly to the case of a signal
connected with the population. Choosing such a geometry, that the product V3.V, in
R, is either real or imaginary, we can obtain the resonance of an almost dispersion
(neglecting the small contribution of the absorption curve) or absorption (neglecting the
contribution of the dispersion curve) shape. We may also change: the sign of a signal: by
changing the sign of the product V,.V,, (it was impossible for the population signal
smce it depends on the square of the module of the Vperturbatlon) It plays a very important
role in our experiment because due to a cylindrical symmetry of the coupling electric field, .
the above product gives, in average, the value of 0, and the terms connected with the
coherence were not observed.

a

ab =

6.1y

1 However, if we described the system with Eo— E, comparatively small and with a strong coupling
potential and big difference I'; and Fa, I’y the correction corresponding to this term could be noticeable:
Unfortunately, our calculation cannot define its absolute value since we do not know how to choose I'o
and its arbitrariness. :
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7. The properties of .the resonance width

The poss1b111ty of narrowmg the resonance curve by ‘an additional coupling between
the levels
7.1. The formula describing the width

In the general case, when we neglect an imaginary part of the product R,R,, the
halfwidth Aw,;, of resonance connected with levels anticrossing is

; Lo+l (. 4RH%\'?
Aoy, = 3 <1+‘ F.r, . (7.1
i 4R, ,
Putting Fb x and ]F—,,b 105> we get
fwl ; 2
Awy ) = — (k+1D* | 1+ Quly (7.2)
¢ 4 K

Let us assume that we change x without changing Q. For small x values (I°, < I,) the
|Qa|?
K
there is one particular value of « for which at a defined Q,, the resonance width is the
smallest, despite the increasing width I, of levels [a).

term

decides of the width. For large « values the width is decided by x2. Hence,

7.2. Experimental realization of the discussed situation:

The situation in which we change x without changing Q,, may be easily fulfilled
in some specific physical cases. We can see that for two crossing levels the width of only
one should be changed and the coupling potential should remain unchanged. In the case
of the crossing of the Zeeman sublevels with opposite parities coupled by an electric
field, the E; component parallel to the magnetic field couples the sublevels with AM = 0
and the component E |, perpendicular to the magnetic field, couples sublevels such that
AM = 1.

Let us consideér the level diagram shown in Fig. 3, which shows the Zeeman sublevels
for n = 3 in hydrogen. In weak magnetic fields we see two level crossings of § and P
levels:

2S1/2, m; = —% with 2P1/2, my; = +% coupled by EJ_
and
251/2, m; = —% with 2P1,2, my; = —+ coupled by field Ey.

The widths of levels are I's = 1 MHz and I'p, = 30 MHz. In the first crossing the field E;;
couples very strongly the level %S, ,, m; = —1 w1th the level 2P, ,, m J = —3 changmg
considerably its width, while the level 2P, J2o My = % with 28, /2> My = 7§ presents a much
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weaker coupling (large distance, small relative change of the width due to the large width I'p).
This field does not change the level direct coupling which depends on E | only. Substituting
I', = I'sand I'y, = I'p, we can see that k is very small. By introducing the field E, we may
change x through the change of I's, keeping I'p and |Q,,]? practically unchanged. Hence
for a given E, it should exist such E values for which the width of resonance is minimal,

n= 3

e
SI/ /312 432 Af2 32 ~[2 =
/ - /// - m;=
’, /- - P

/79/ / - +1/2
Ds 7 /
3 <
, -
3P,
2
0 \
2
235,
2
P,
Fi

. \ \\ R _1/2
~5/2" —3/2\—\3/1\\

1 . .
] 1000 2060 B ir; Gauss
Fig. 3. The didgram of levels with n = 3 for hydrogen

In the case of the second mentioned crossing the situation is similar, but the fields Ey
and E, play opposite roles. It is very important to know exactly the above mentioned
resonances and the fields E , and E occurring in the experiment because from their position
we calculate the Lamb shift. Hence, the results obtained in the experiment may be optimized
when studying simultaneously resonance width and position and influencing them by
E, and E|.

The level crossings 25, m; = —+ and 2D, m; = —3 (Jis not a good quantum number
in the magnetic field range used in the experiment) at the field 1433 G may show another
example of the described situation, still for n = 3. These levels with the widths I's = I
MHz and I'p, = 10 MHz are coupled through the P, m; = —%level by field E,. The
field E couples with other levels (mainly with 2P, my = —%) the S level only. The
2D, my = — % level is not coupled by the field E) with any level due to the value of
my, so it does not change its width. The width of this anticrossing was investigated
experimentally as a function. of E}, when the positions of level crossings were measured
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in order to find the Lamb shifts in the #» = 3 state. It should be mentioned that in fact
the crossings described before are much more complicated because of hf structure of
the levels. However, to avoid the complications of the whole picture we shall not
consider it here.

7.3. Physical interpretation of the resonance narrowing

The resonance narrowing, which occurs when the width of one of the levels increases,
contradicts the intuition and that is the reason why we shall spend a little more time on
its thorough interpretation. In Chapter 4 we gave equation (4.4) for E, and I'; describing
the energies and widths of crossing levels where all couplings were taken into consideration.
These equations were solved by Dupont-Roc (1968) for the case of two levels coupled
directly and by Series (1964) with an additional condition that one of the levels has I' = 0.
The following conclusions may be drawn from the discussion of the results of these works:

r,—r

a. a level crossing remains level crossing all the time for ¥, < [47"{ and at the

same time the angle of intersection of the levels curves increases with increasing V, and

q IFa—Fb[
has maximum at V , = —

. In our opinion this effect is responsible for resonance

narrowing. The decrease of the difference I', —I', e.g. by increasing I', due to an additional

coupling (we assume I', < I',) causes, at ¥, constant, approaching to the condition
r,—r .. . n! .

Va= l—a4 bl— for which the angle of levels at their intersection is maximum so the

resonance width is minimum.

Iy

r,— . i . .
b. for V, > lT the levels repulsion occurs, typical for anticrossing of levels

with equal widths. The smaller the difference I',— I', the further we are from the minimum
of resonance width, which'causes the widening of the resonance.

7.4. Experimental verification of the possibilities of narrowing the
anticrossings

As it was mentioned in 7.2, in order to verify experimentally the suggested conclusions
we studied the resonance corresponding to anticrossing of 325, m; = —% and 32D,
my = —% levels. The experimental set-up described in details by Glass-Maujean, Julien
and Dohnalik (1978) was used. The electron excitation transferred hydrogen atoms to
the wanted state. The field £, was a motional field seen by the atoms flying through the
strong magnetic field. The spatial distribution of the density of exciting electrons and
hydrogen ions creates a small parallel field E,, and in addition external field E)e
was applied. In order to keep the energy of exciting electrons constant, in the observation
region, the voltage accelerating the electrons was appropriately changed with Ej,. Such
a procedure could, however, influence atoms velocities after an excitation and spatial
distribution of electrons and ions and what follows, change simultaneously the E , and
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E”sp Since the shift of resonance given by the terms r,, and r,, depends on E and
E" (Eys +E”ex) it was possible to check how big is a range of the applied ﬁelds
in which the shift déepends on E” only, then E, and E |, are constant. We fulfilled this
condition for £ = 120+ 180 V/em, with E| = 42.5 V/ecm and E|,, = 20 V/cm. In this
range of E; we have @, constant. Typical curves obtained for E; = 120 V/em and
145 V/em are shown in Fig. 4. Large shift of the resonance center is observable, while

W
I.\l'

Y
/A

/ ”’L\
E:120% J Jm(# %‘W@

J}J'“Ww%n M’ A e s

N
g

arbitrary units

Fig. 4. Resonance curves of anticrossings between:the levels 32S, my = —— and 32D, my = —— at the
fields E) equal 120 V/em and 145 V/cm

the narrowing is very small (smaller than the experimental error). Fig. 5 shows a theoretical

r
curve — the resonance width as a function of x = f—“ for |Q,|? = 181.15 — taken
b

from our experiment. The theoretical width is marked for x = % =01(E, =E; =0
B
which unfortunately, due to the coupling through the intermediate state was not obtained
in our case. The width for ¥ = 0.36 is also marked and it corresponds to the one obtained
at E, = 42.5V/cm and E|; = 0. Five experimental points for x from 0.87.to 1.45 are in
good agreement with the theoretical curve and obtained widths are considerably smaller
than the width for ¥ = 0.36. The theoretical curve has a minimum for ¥ = 1 and it con-
firms our interpretation. Hence, we see that it is really possible to get the narrowing of
the resonance curve. If we start from the point for x = 0.1 (such a situation takes place
for the direct coupling of .crossing levels) the obtained narrowing will be considerable.



631

Aw7/2

Q%15

arbitrary units
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Fig. 5. Dependence of the resonance width on x; O — theoretical values for x = 0.1 (E, = E) = 0) and
and « = 0.36 (E; = 42.5 V/cm, E} = 0), @ — experimental .points

8. Applicability conditions

Let us racapitulate the conditions of calculation applicability

a. (E,~E)*, (E,—E)*..>T%TIr3,r2..=n?
b. ﬁac < I—Dab

F(EO) < (Ea_Ec)2= (Eb_'Ec)2 e R 92

These conditions are usually fulfilled very simply. Let us notice the conclusion resulting

from conditions b. and c. for the level coupled through an intermediate level. From c. we
2

J— V . . —_— IR b|2 VZ
have R, (E,) ~ —< Q which gives V2 < Q? and at the same time P, ~ e~
(Eo) 0 g b (E,—E,)? 202

- \?
and P, ~ (5) , and from b. we have V23> I'%, hence Q2> V2> I?,

It is easy to fulfil the mentioned condition in the interesting us cases n = 3, n = 4
levels in hydrogen since I' ~ 10 MHz, Q ~ 10> MHz. This condition is also fulfilled in
our experimentally studied and described situation.
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