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MAGNETO-ELECTRIC SUSCEPTIBILITIES OF DEGENERATE

STATES. I. GENERAL STRUCTURE OF SUSCEPTIBILITIES, AND

LINEAR INTERACTION PROCESSES BETWEEN ATOMS AND
ELECTROMAGNETIC FIELDS OF LASER WAVE
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By angular momentum theory, explicit expressions are derived for the tensor of
electric, magnetic and magneto-electric susceptibilities of degenerate states. The formulae
are well adapted to direct numerical computations for the atoms. The linear atomic suscep-
tibilities analyzed are shown to intervene in the following processes: (i) Rayleigh and Raman
light scattering; (i) AC Stark effect in intense laser field. Invariant atomic parameters,
occurring in the above processes, are calculated numerically in the approximation of the
model potential method.

1. Introduction

When considering interaction processes involving a quantal system and the electro-
magnetic field, complete information on the system is contained in the susceptibility
tensors which define the electric and magnetic polarisations, induced therein by the field.
Various processes, occurring in systems in the presence of an electric and magnetic field,
have been considered in particular in Ref. [1]. We shall be dealing with systems having
a centre of inversion: atoms, or the simplest symmetrical molecules. In this case, in the
first non-vanishing order of approximation, the electric and magnetic properties are
described by the linear electric and magnetic susceptibilities y{;(—w; ®) and y{}(—o; w)
whereas the interferential effects due to the simultaneous action of the oscillating electric
and static magnetic fields are described b the third-rank magneto-electric susceptibility
tensor y;;{—w; , 0).
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Inasmuch as the susceptibilities x are tensors, it is of interest to elucidate explicitly
the dependence of y on its indices 7, j, ... and to determine the invariant atomic param-
eters R, dependent solely on the structure of the atom. With regard to the linear sus-
ceptibilities, such a procedure is analogous to that applied in the monograph [2] and con-
sisting in a decomposition of the linear seattering tensor into irreducible parts. Since in
the general case the state of the atom is degenerate (e.g. with respect to the projection M
of its angular momentum on the quantisation axis), the tensor y depends as well on the
quantum numbers M, M’ of the initial and final states.

In this work, the general structure of the tensors yi;, xi; and y;; is investigated for
degenerate states. A decomposition of these tensors into irreducible parts is derived,
their dependence on the tensorial indices and quantum numbers M, M’ is resolved, and
formulae for the invariant parameters R, are proposed. Applying the results thus obtained,
calculations are performed for Rayleigh and Raman scattering and the dynamical Stark
effect in the intense laser field. The atomic parameters defining these processes are calculated
numerically for a variety of atoms and various radiation frequencies w in the approxi-
mation of the model potential method, developed in previous papers [3, 4].

2. General structure of linear and non-linear susceptibilities

2.1. General formulae

We shall be considering a quantal system (an atom) in a monochromatic electro-

0]
magnetic wave with the wave vector & (lkl = —) and field vectors:
c
E(®) = Re {E@)d® =9}, H(f) = Re {H(w)e® "=}, 2.1)

with: H= — [k><E] and I = §~ | E|? — the intensity. Moreover, a static rnagnetlc field

H(0) exists in the medium. The medium is assumed as sufficiently rarefied for 1nteract10n
effects between its atoms to be neglected. Our further considerations will bear on the
isolated atom.

Effects of interaction between the atom and the external field, of strength small
compared with that characterizing intra-atomic fields (~ 108 V/cm), are conveniently
analyzed in terms of susceptibilities, defining the electric and magnetic moments induced
in the atom by the action of the field. The vectors of dipolar electric p(¢) and magnetic
m(t) polarisation can be calculated in the standard manner as the mean values of the
appropriate dipole moment operators:

p() = <P 1dIP@D), my) = PO IpPOD, (2.2

le|h
where d= Z e, i = —pg(L+28), pg = o

is Bohr’s magneton, N -— the number

of electrons r; — the radius vector of the i-th electron, and L, S — the orbital and spin
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moment of the atom. W(r) is the solution of the Schrédinger equation of the atom in the
field!:
ih U—l%(t-) = {H,~d-EQ)—p - [HO)+HOP}P®. 2.3

‘The initial state of the atom at zero field |0> = |nJM) is an eigen-state of the Hamiltonian
H,, with: n— the principal quantum number, J — the total angular momentum, and
M — the projection of J on the quantisation axis. Thus, in the general case, the initial
state of the system is (2J+1) —fold degenerate with regard to the projection M. By
solving Eq. (2.3) by perturbation theory in the basis of eigen-functions of the operator H,,
one can obtain ¥(¢) to within the desired order in E and H, H(0). Whereas the atomic states
possess well-defined parity and the matrix elements of the operator d differ from zero
only between states of different parity, the perturbation series for p(r) will contain but
odd powers of E and that for m(t) — but even powers.

Restricﬁng ourselves to terms linear in the magnetic field, we can write the polari-
sation vectors at the frequencies 0 and o as follows:

p(8) = pO)+{p(w)e” " +h.c.}
m(f) = m(0)+ {m(w)e ™' +h.c.}, (2.4)
‘where:
pi0) = 3 x5’ (0; — @, WHH)E () +% 1505 —, w)ES(@)Hy(w)
P@) = xi(—o; )E o)+ i (—o; o, OE(@)H0)+ ...
m@) = yii(—o; o)H (@) + ...
mf0) = (nIM|uInIM">+3 15:5(0; o, — 0)E{@)Ef(w)+ ... (2.5)
We shall express the vectorial quantities in the spherical basis e, = e,,

1 .
ey = F 7 (e, tie,). The covariant and contravariant components are related as usual:

Ay = (—1Y4™™. For E and H, which are complex vectors if the wave is elliptically
polarized, we have 4} = (4%)™. In the formulae (2.5), we omit terms quadratic in H(w)
and H(0) since they are usually small in systems with a centre of inversion. However,
if quadratic ferms are taken into account, the operator 7% of diamagnetic interaction
between the atom and the fields H(w) and H(0) has to be included in Eq. (2.3) [5}

Since the initial state [nJ) is M-degenerate, in order to take the degeneracy into
account the mean values in (2.2) have, in the general case, to be calculated with functions
¥(2) involving different values of the projection M. For example,

P(O) = <Pp(t) |30 ()),

where ¥y, and ¥, are solutions of Eq. (2.3) corresponding, respectively, to the initial

* We consider but dipole interaction. Multipole terms will be neglected [5].



584

and final atomic states |[nJM ), |nJM'). Consequently, in addition to depending on the
tensorial indices i, j, ..., the dipole moments and susceptibilities in (2.4, 5) depend on
the projections M, M’ and, from this viewpoint, form a (2J+1)x (2J+1) matrix. For
the sake of conciseness, we shall refrain from stating any dependence of the type x = yaur
in the formulae. With regard to numerous physical processes, the observables are usually
determined as averages over all orientations of the atom in space. Thus, e.g. with regard
to processes of spontaneous scattering, averaging bears on the quadratic combinations of y:

= 1 : :
2 __ , 2
MM’

whereas coherent processes are expressed by the averages

Obviously y2 # (%)%, whereas xZ equals (¥)? only for the non-degenerate state. Although
the direction of the quantisation axis of the atom (the z-axis) is generally arbitrary, and
the functions |nJM) for different orientations transform by way of Wigner D-functions [7],
‘the choice of the z-axis is usually dictated by the specific physical situation thus permitting
to write the final results in the simplest possible form (cf. e.g. formulae (2.20) and (2.21)).

For an atom in the state |nJ), the expressions for the susceptibilities of (2.5) take
the form:

1 —w; 0) = <nIM|d,Gg, - o(ry, 12)d;InIM Y +{nJMid;Gg, + (1, P2)diinIM">,  (2.6)
1i(— o, ) = (nIM|pwGg, - (1, FuinI M’
C L nIM|pGe, o (ry, P)Ind M, 2.7
)Ciejnl:e 0, ~w,») = {(nJM| {diGE,.(rl’ "z)ﬂjGE,.+m("2, r3)d;
+diGg, - o(r1s P2)UGE (ra, r3)di+d;Gg (1, ¥)4,Gr, - P15 P3)U;
+8;GE,+oF1, 12)AiGE, 1 o(F2s P3)di+ A G, - o(F1s #2)diGE, - o(F2, F3)H;
+u;Gi, (11, F2)d Gy (¥2, 13)ds} INTM'), (2.8)
xi?}“(—w, o, 0) = {nJM| {diGE,.—-w(rls ry) [Mj—% (nIM|pu;\nJ M>
+<{nI M |p;lnI M )1G, - o(F2, #3)dy
+deEn+‘m(r1’ ry) [ﬂj—%‘ (<nJM|”j|nJM>+<nJM’iujanM’>)]GE"+w(r2’ r3)d;
+diGg, - o(r1, 1) G, (r2s r3)u;+ 1iGp (11, 12)diGr,— o(F2, F3)dy
+di G, v o(r1s ¥2)dGE (P, F3)U;
+u4;Gg, (g, 12)d, G, 4 (2, 13)d;} DM, 2.9
2 (05 —o, 0) = yip’(—w; 0, ). (2.10)
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Above,

(v )'P@

2.11
E_E 2.11)

Gy(r, ¥) =

is the Green function of the atom replacing summation over intermediate states in the
series of perturbation theory. S denotes summation over the discrete spectrum and inte-
k

gration over the continuous spectrum of the atom. If the energy E in the Green function
coincides with one of the eigen-values of the energy of the system, e.g. E = E,, G, is
given by (2.11) in which the term with k& = » is absent.

The susceptibilities (2.8)—(2.10) define various physical processes in which inter-
action between the atom and field is apparent. Thus, L (—o; o, 0) defines Faraday’s
effect, light scattering in a magnetic field H(0) and the shifting and splitting of the energy
levels of the system in fields E and H(0); likewise, xii; (0; —w, w) defines the inverse
Faraday effect; and 55 (0; — o, w) — that of optical rectification [6]. Besides the preceding
magneto-electric susceptibilities, it is of interest to consider the following third-rank sus-
ceptibilities at the frequency 2w:

p2w) = 1 (—20; 0, ©)E(0)H(w),
m20) = xi (—20; 0, 0)E{(0)E(w),

defining scattering of radiation with the frequency 2. We shall refrain, however, from
detailed calculations of y(—2w) as a strict analysis of second-harmonic scattering would
have to comprise effects of quadrupolar interaction of the field and atom [5].

In dealing with degenerate states, the investigation of the general structure of the
tensors y and of their dependence on the tensorial indices 7, j, k becomes highly complicated
in comparison with  the non-degenerate case. Thus, for non-degenerate states:

Xijk ~ aaijk, {l, j, k} == X, y, z

where & is the Levi-Civita tensor, and ¢ — an atomic parameter; in the case of degenerate
states, no such simple relation can be written, and y is a function of several independent
atomic parameters and the quantum numbers M, M'. For integration over the angular
variables in (2.6)-(2.9), we expand the Green function Gg(r, ') in a series in partial waves:

; , ¥ r
GE(r’ ¥ ) = z gJ(E: v, r )(DJM (;) QfM (;7) > (2‘12)
- JIM

where g, is a radial Green function, depending only on the absolute values of the radius-
—vectors r, r', whereas &, is the spin-orbital part of the atomic wave function with total
angular momentum J the explicit form of which is given by the type of coupling between
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the angular momenta in the atom?2. The further traansformation of (2.6)—(2.9) is conve-
niently performed by having recourse to the techniqye of irreducible tensors and the
Wigner-Eckart theorem [7]:

J xJ

A AN = (Y M
IMIT M’y = (=1) (_M” e

) I, (2.13)

where (Z;;) is a Wigner 3-j symbol, and {J||T,||J"> the reduced matrix element of

a tensor operator of rank «.

2.2. The linear electric and magnetic susceptibilities
By (2.12), (2.13) and the well known formula of angular momentum theory [7]:

_w-efa b x\(xdc
Z( D (aﬂ—&)(éév)
- a o ac y\frdb\ldecx
= (—1)* Z(_D (2y+1)<OC ) —n)(n s ﬂ> {a 5 y}, (2.13a)

where { } is a 6-/ symbol, the expression for the linear susceptibility goes over into:

(=3 ©) = nIMI {TiGp, 4 o1, 1) T+ TG, - oy, )T} INIM'>
_ VM 2 T AN J J p p 11
= 5 (-1) \/3(2J+1)<_M M ml om i )% (2.14)
r=0,1,2

where

—)*Qp+1 11 :
1

1
and
nd [T’y <kJ'|T Ty
Ek.” —'E

M, (E) = (nJ | Tg, (E; r, ) |nT> = S

k

is a reduced compound matrix element, The formulae derived above are valid for x°
as well as 3™ provided 7 is taken as representing d and g, respectively.

The expression (2.14) gives the decomposition of the tensor y;; into irreducible tensors
of rank 0,1 and 2 corresponding to p = 0, 1, 2. The quantities «, are invariant atomic

2 The functions gy and @ pr can depend, in addition to J, on other quantum numbers e.g. on the
orbital momentum L within LS-coupling, etc. Inasmuch as the general structure of the expansion (2.12)
remains - unaffected, the indices at gy and ®jpr are not specified.
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parameters. In particular, for the non-degenerate state (J = 0) we have: o«; = a, = 0,
% = 3 [M;,-1(E,+0)+ M;, - ((E,— 0)]
and
1i—w; 0) = (—1)i+1“05i,—j-

For the level with J = %, the two parameters «, and ®; are non-zero.

In order to prove.the advantage of writing ; ; in the form (2.14), we shall now con-
sider two examples: Rayleigh and Raman light scattering, and light shift of atomic levels
in a field.

The general cross-section formula for Raman scattering of a photon with the polarisa-
tion vector e and frequency w involving a transition of the atom from the state InJ>
to |n'J") with emission of a Raman photon having the polarisation ¢’ and frequency
o' = E,+w—E, is (cf, e.g. [2]):

do 1 ek Ram( 7 ) & 6060'3 2.16
S c———— ei ifj — ; w ’ . 3
a9, ~ 27+1 & %is & (2.16)
M, M’

i,j=0,+1

where the Raman susceptibility y5™ is defined similarly to (2.6):
X?jam(—w'; ) = {nJM| {d;Gg, , ,(rs, r2)d;+d;Gg, _ (ry, ¥,)d;} [0 T M)

and can be put in a form analogical to (2.14):

samg o' — . M / N J J’ p p 11 Ram '
B~ o', ) Z( ) \/3(2J+1)<_M Mo\ —mij)e™ 2.17)
p,m .

with:
ram _ (—D¥Qp+1) (1 1 p) i .
= — Jldg; (E,+w; v, ry)d|n'J
o \/3(21+1) 4 JJ U, [{nJ| 25,( ;1L r)dn'J")
+(=DXnJlldg; (E,—w; ry, rp)d|in'J’>]. (2.18)

can be written as follows:

de
By (2.17) and applying spherical tensor technique, an

e’

do Jo§em) 2 N 3we’?
— e ’ R %
a9, @pr1y & ®rle®@et) =5
r=0,1,2

= [leo™%i(e™ - P+ |ei*™ (1 [(e’ - ¢)]2)

wa)r3
= (2.19)

+55 [P+ (e P =2 [(e'* - ¢)?)]



588

{a ® b}, denoting the irreducible tensor product of the vectors a and b [7]. The above

do
derived expression for 7

0,
the cross-sections for scalar (G°), antisymmetric (G*) and symmetric (G®) scattering are
expressed directly by way of the parameters oc':,a“':

is analogical to formula (61.7) of the monograph [2], and

GO — laléam|2, Ga e Ial}amlz, Gs - % Io‘l;amiz.

For Rayleigh scattering, we have E, = E,, and o™ coincides with (2.15).
Computations of the parameters o, for atoms are easy to perform when using the

analytical expression for the Green function g,(E;r,¢") in the approximation of the

model potential method [3,4]. The technical details of these computations are to be

TABLE 1

The cross-section of Rayleigh and Raman scattering for the ground and metastable states of hydrogen atom

o 015~1s, cm’® 025 - 25, e’ 025 - 18, cm®
WR 2.8 x 1028 1.0x 1023 | 1.3x 1022
WN 4.0%10-2° 7.5 % 10-26 | 1.2%x10-23
= e
N [
H |
§ 0w b | |
5 | .
o | |
= .
] hy ‘
~ 0B A |
&
5 1 T
;(‘ '\1 [“
> il ‘
\l [ i
| R
L\ |
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1
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i :
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|
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18 2.2 26 30

4 -
wx1OL,cm —

Fig. 1. Dispersion of the symmetric and antisymmetric Raman scattering cross-section for the transition
63P, — 6P, of the mercury atom
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found in Ref. [4]. Numerically, the «, depend essentially on the light frequency as well
as the structure of the atom. Thus, e.g. in the case of the hydrogen atom.the cross-sections
for Rayleigh and Raman scattering differ strongly, for the ground 1S and metastable 28
states and the ruby laser (wr = 144000 cm™!) and neodymium laser (wy = 9440 cm™!)
frequencies (Table I).

Fig. 1 shows the dispersion of the quantities S(w) and A(w) defining the cross-sections
for symmetric and antisymmetric scattering

S(w) = L rjweG®,  A(w) = £ rjwn’G

2

ro = — — the classical radius of the electron, for the transition 6°P, — 6°P; of the

mce
mercury atom (scalar scattering is absent in this case).

Table II gives the values of S and 4 for Raman scattering by the atoms Tl, J and Hg

at some characteristic laser frequencies. It is worth mentioning that our calculations are

TABLE II

Parameters of symmetric (S) and antisymmetric (4) scattering by atoms TI, J and Hg for laser frequencies
(in units of 1028 cm?/sterad)

Tl: 6Py, — 6°P;), J: 52Py;; — 5%P5), Hg: 63P, — 63P,
o, cm™* — -

S(w) A(w) S(w) A(w) S(w) A(w)

| |
9440 0.029 10.0002 ! 10.547 10.006 | 34.5 14

14400 ..3.84 .- 0.089 2.02 0.042 465 55
18880 42.5 | 1245 5.37 0.177 3.7x 104 1.2x10%
28800 1460 340 |37 2.81 408 700

in good agreement with the experlmental data of Refs [8, 9] for the Raman scattering .
cross-sections of Tl at w = Wr and J at @ = wy. i

The parameters , moreover define the change in energy AE,;), of the level |nJ)
in an intense light field similar to the Stark effect in a static electric field. A general method
for the calculation of AE, in a monochromatic wave is to be found e.g. in Ref. [10]. We
shall consider the cases of linear and circular polarization separately.

For a linearly polarized field E(z), the expression for AE,;,, in a system of coordinates
with quantisation axis directed along the field vector E is:

AE, ;= =% 26,0(~; w) |E|?

and, with regard to (2.14), can be written in the form:

(2.20)

. —J(J+1)
AE = “Elr {“o— } |E2]

"2 [10J(+1) 2T +3) @I — D]
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For circularly polarized E(f), the quantisation axis is conveniently chosen in the
direction & of wave propagation, and the expression for AE takes the form:

AE, g =% Xi1,-1(—0; @) |E)?
L a M N 3IM?—J(J +1)
e PO —
U0 [IGHDT? TP 2[I0J(+1) (20 +3) 2T~ 1)]12
where E(¢) is assumed as right circularly polarized; in the opposite case, the sign at the
oy-term is positive.
At 0 = 0, Eq. (2.20) describes the static Stark effect and ag, a, are related with the
scalar (¢°) and tensorial (¢") polarizabilities of the level |[nJ> [11]:
J(2J—1) e
10J+1)(2J+3) ]

} E?,  (2.21)

& =0 of = —az[

The parameter «; vanishes at @ = 0, as follows directly from the definition (2.15); conse--

quently, a, is a supplementary characteristic of the level |[nJ> in a field with non-zero

degree of circular polarisation. By analogy with o® and ¥, the quantity «, is naturally

referred to as a vectorial (or antisymmetric) polarizability as defining the antisymmetric
part of the cross-section for Rayleigh scattering in (2.19),

Numerical computations of o® and o« for a variety of atoms at laser frequencies are

to be found in Ref. [4]. Table III gives the values of «, for some excited states of the xenon

TABLE Il

Vectorial (or antisymmetric) polarizability «, for some excited states of the xenon atom at neodymium
laser frequency (wn = 9440 cm™')

State Reay; in atomic units Ime;; in atomic units

5d [0 3] 3521.8 0

5d 1 %1, 13653.4 0

5d [1 %), 3824.54 0

5F 11 4L —499.34 78.2
511 4L —433.4 66.4
5 3 ik —642.9 48.8
5 3 3]s —785.6 | 47.6
5[4 %l —494.7 57.5
5 [4 31s —420.7 56.6

atom at neodymium laser frequency calculated in the approximation of the model potential
method [3, 4]. The imaginary part of «, is related with the photoionization cross-section
of the level |nJ), when the frequency @ exceeds the ionization potential |E,].

Thus, the measurement of the parameters «, in cxperiment is feasible in processes
of light scattering as well as in studies of the shifts in spectral line frequencies of the atom
in a field. In the latter case, not only the absolute value but also the sign of «, can be
determined.
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2.3, The magneto-electric susceptibilities

The investigation of the general structure of the susceptibilities Kijx 1S more highly
complicated than in the case of y;;, since the decomposition of a third-rank tensor into
irreducible parts is not unique [7]. As an example, we shall consider Kk (—@; 0, w);
the other tensor y;; can then be dealt with similarly. With regard to (2.12, 13) and the
summation formulae for 3j-Wigner symbols (12.1.7) of Ref. [7), we re-write (2.9) in a form
similar to (2.14):

Xigi (@30, @) = (=17 MM 1307 11) 2x4+1)]12

x5y

J J x x1 y\/y1l1
<—M M C)<—€ j _,1)(,, i k) . A2

Here, the R,, are combinations of reduced compound matrix elements, and are analogical
to the parameters «, of Subsection 2.2:

1/2 1 Jy Jj
ny=(2y+1)[ 2x+1 ] JZ(-D“" L, gl

320 +1) lmz o xJ

x(nJildg, (E,—w; ry, r)ugs (E,— 0; ty, r3)d||nTy +(~1)(nJ ldg; (En+o; vy, ry)n

X gn(Eyt 03 1, 1)) +{1-(~ 1)) {.lr .111 i} {j > }
1

X (Knd llpg s (By; 11, ¥2)dg, (B, —; 1y, 13)dlndy +(—1)"(nd llug, (E,; r,, r)d

X 81 (Ent@; 1, r)dnID) | +5 [1—(=1)*] (- 1)+

x<nJ lling {j ] }} Z {} r ;l} (nT 1dg; (E,+0; #1, 12)g5,(E, + 05 ra, 1)y

J1
+(=10nJ lldg; (E,~; 1y, r2)gs (E,—; 1y, v)dlnI )\ . (2.23)

It follows from the selection values for the 3+ symbols of (2.22) that, in the general
case, 7 distinct parameters R,, can occur corresponding to different combinations of the
indices x, y. This, moreover, is in agreement with the general statement (see Subsection 3.2
of Ref. [7]) that an arbitrary third-rank tensor can be decomposed into 7 irreducible
tensors; from the latter point of view, the parameters R,, are their invariants. From the
form of (2.23), however, the terms of R, with x = y can be shown to vanish. With regard
to the second and third group of terms in (2.23) this is obvious because of the factor
{L—=(—1)**"’}. For the first terms, this follows from the properties of the 9-j symbol: at
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J. = J,, the 9-j symbol contains 2 identical rows and is equal to zero, if (x+y-+1) is odd;
at J, = J,+1 and fixed J,, the respective 9-j symbols are identical if (x+y) is even,
but with regard to the phase (—1)"* 7 the matrix elements with the momenta J; = J,+1
and J, = J,—1 cancel out.

Hence, the susceptibility y;; is characterized by 5 mutually independent atomic
paramaters R,,, corresponding to the sets

(x, y) = (091): (1a0)9 (152)9 (2,1), 3,2).

With regard to the “triangle relationship’ for the 3j-symbols of (2.22) it is easy to
check that, for the non-degenerate state with J = 0, the only non-zero parameter is Ro;,
and (2.22) becomes:

eme N \ 111
Xijie (= @3 0, w)=<i j k) Roys (2.24)
Roy = %‘ n,J = Oud{gl(En'I'w; ¥y, P)UE(Eyt+ @5 1y, #3) — g(E,— w5 1y, 1)

xﬂgl(En'—w; ¥, F3}d“n, J = 0>

Above, the 3-j symbol (11 Jl ]lc) has antisymmetry properties like those of the Levi-

Civitd tensor &g and is zero if (i+j+k)# 0.

For states with J = 1 (twice degenerate level) the following 3 parameters are non-
zero: Ro., Rio and R,,. In states with J = 1 only R;, is zero. Finally, in the general
case at J = 3 all 5 parameters R,, differ from zero.

It should be noted that the decomposition (2.22) for x is not unique. By applying
the relation (2.13a) to the product

(<5 G s
-¢& j-n) \n i k)’

Xiji can be transformed to a form similar to (2.22) albeit with the interchange i = j and
differently defined R,,, the number of independent R,,’s remaining unchanged. This,
in fact, is the expression of the previously mentioned non uniqueness characterizing the
decomposition of a third-rank tensor into irreducible parts.

A detailed account of the numerical calculation of the parameters «, and R, for
specific atoms, as well as discussions of various magneto-electric processes described by
these parameters, will be given in a subsequent paper (see, next paper in this Journal).
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