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A model of magnon-plasmon coupling in antiferromagnetic semiconductors is proposed
on the assumption that the ground state of a magnetic jon in the crystal field is orbitally
non-degenerate. The model is based on indirect, via spin-orbit coupling, interaction of the
spin system and electric field produced by a plasmon. The estimated value of this coupling
amounts to about 10— 10-2 cm~!. The explicit form of the Hamiltonian, describing this.
interaction, is given for T symmetry of the environment of the magnetic ion. The differential
cross section for the Raman light scattering from hybrids and its dependence on the external
magnetic field are given.

1. Introduction

Infrared [1, 2] and neutron [3, 4] spectroscopy in connection with Raman [5-7]
and resonance Raman [8, 9] spectroscopy are highly potent methods for the investigation
of elementary excitations and interactions between the latter. The most striking effects
of these interactions are observed, in the appropriate spectra, in those ranges of frequency
in which the interactions between elementary excitations acquire the resonance nature
i.e. when frequencies of the interacting excitations lie close or are equal to one another
[3,6, 10-12]. Light or neutrons are then scattered not from ““pure” modes but from hybrid-
ized ones. An effect of resonance coupling between elementary excitations in the solid
state has first been observed in the plasmon-longitudinal optical phonon system [5, 6].

Recently, intensive studies of resonance interactions in the systems: magnon-optical
phonon and magnon-acoustical phonon have been reported [3, 4, 12, 13]. The coupling:
mechanism of the last two kinds of elementary excitations can consist either in a phonon
modulation of the crystal field transferred to the spin system by way of spin-orbit coupling,
[4, 14], or in a modulation of the exchange integral [15].

The aim of this paper is to draw attention to the possibility of coupling in the plasmon-
magnon system due to interaction of a spin, via spin-orbit coupling, with the electric field
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of a plasmon. The experimental verification of this prediction should be sought in antiferro-
magnetic semiconductors with a carrier concentration of 1014-1016 cm~—2 and large mobility
of order 10 cmV/s, of the type EuTe and that of certain spinels [16, 17]. Under these condi-
tions, the plasmon frequency approaches a value of several cm— which should make it
possible to observe resonance interaction between the magnons and plasmons. It should
be emphasized that the frequency of antiferromagnons can be varied by applying an ex-
ternal magnetic field in the range up to 20 cm* and thus brought into line with the plasmon
frequency.

In Section 2 we propose a model of the preceding magnon-plasmon coupling, which
becomes essential when the ground state of a free magnetic ion is orbitally degenerate.
The final form of the Hamiltonian is obtained for the T, symmetry of the environment
of the magnetic ion, but the final results can be easily generalized.

In Section 3 we discuss the problem of hybridization and Raman light scattering
from hybridized modes, as well as the feasibility of an experimental confirmation of our
calculations. The most important conclusions are drawn and discussed in Section 4.

2. Model Hamiltonian of magnon-plasmon interaction

Let us consider a single ion of the magnetic lattice localized in an external magnetic
field H and an electric field E. The Hamiltonian for this ion is of the following form

where H, contains the intra-ionic interactions H;_; and the interaction with the crystal
field of the lattice He_p i.e.

Hy=H;_;+H¢_p, 2

whereas V' is the sum of three components: the spin-orbit coupling, the Zeeman term and
the electric dipole interaction

V =AL-S+py(L+2S)-H—E-D 3)

L (S) denoting the orbital (spin) angular momentum operator, A — a parameter of the
spin-orbit coupling, yz — Bohr magneton, I — an operator of the electric dipole moment
of the form D =}’ er, (e — the electron charge, r, — the position vector of the n-th elec-

n
tron). It is assumed in (3) that E is constant throughout the region of the atom, The ex-
change interaction of an ion with the remaining ions of the lattice will be introduced later
when considering the magnon system.
Let us consider the case when the ground state |0) of the Hamiltonian H, is orbit-
ally non-degenerate and the nearest orbital level is sufficiently well separated so that V
can be dealt with by perturbation theory. The last condition is in principle equivalent to
the following one:

Heg» AL~ S C))
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which is fulfilled for ions of the rare-earth metals. The influence of the perturbation ¥ on
the level |0) can now be described by a spin Hamiltonian Hs, where we are interested
only in those terms which contain the coupling of a spin with the electric field E. These
terms occur in the third order of the perturbation treatment and, with accuracy up to terms
quadratic in E and S and linear in H, the Hamiltonian takes the following form

HS = C(zﬂyHaEﬁS)’ +FaﬂyE¢[S'3S,Y] + Gaﬂy[EmEﬂ]S)ﬂ (5)

where [xy] = xy+yx, Cu,, F,p, and G,;, are components of the so-colled electric field
effect tensors [18] and are given as:

Capp = —Apig 3, {PLOIL|a) <a|Dylb) <BIL,10)} (Eo—Ep) ™ (Eo—Ep)™" (62)
a,b

A2 ] )
Fop, = — 5 Z {P{O|D,la) <alL,by {bIL,|0>} (Eq—E,) " *(Eo—E;)~* (6b)
a,b

Gupy = gz {PLO|D,|a) {a|Dglb) <bILyiO>} (Eo—Ea)"l(Eo—Eb)—1 (6¢)
a,b

The states |@) and |b) are eigen-states of the Hamiltonian H,, and E, and E, are their
respective eigen-values. E, is the energy of the ground state |0). Here the operator P stands
for summation over all permutations of the operators L,, Dy and L, etc. In Eq. (5) use
is made of the summation convention over repeating indices. For simplicity we have
assumed that <0|D|0)> = 0 what is, however, not essential. If the magnetic ion is a centre
of inversion, then the tensors given by Eqs (6a)-(6c) vanish identically, and in order to
obtain coupling one has to proceed one order higher in the perturbation calculus. In our
further considerations we restrict ourselves to the 7, symmetry of the environment of
the magnetic ion. The components of the tensors then- reduce to Cyyo = Cyyy = Cy,
= Cyzx = Coyy = C,y. = C, with C,p, = 0 in the remaining cases. A similar property is
also exhibited by the two remaining tensors.

The above considerations are of a general nature i.e. they are valid both for ferro-
and antiferromagnets. Because of the higher energy of magnons and for reasons men-
tioned in the Introduction, we restrict ourselves to antiferromagnetic semiconductors.
Let us assume a simple model of an antiferromagnet in which the same ions are attached
to the sites R, and R, of both sublattices. The Hamiltonian Hy_g describing the interaction
between the spin system and the electric field £ has the following form:

Hg_p =Y Hy(p)+Y. HS(Q)a Q)

where Hy(p) and Hg(q) denote the Hamiltonians given by Eq. (5) for the ions at the sites
R, and R,, respectively. Let us assume that the external magnetic field H is directed along
the negative z-axis. As the field E occurring in Eq. (5) we assume the field originating in
the plasmon system and given by the following expression [18]:

dnne [ h \* k ) 3
ER) = - n—( ) ; (e B af e R, (8)
d
k S

& \2Nm* kg
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where ! stands for both p and g, n(N) denotes the density (total number) of electrons in
the conduction band, ¢ is the dielectric constant of the semiconductor lattice, m* — an
effective mass of the electron, a; (a; ) — the annihilation (creation) operator of the plasmon
with the wave vector k and frequency given by the following relation [19, 20]:

Cok = w0+0£k2 (9)
where
drne®\* .
Wy = - (loa)
em
3h2(3n%n)* (10b)
o = .
10m*?e,

In the low temperature region when the spin wave approximation is valid [7], the Hamil-
tonian (7), on taking into account Eq. (5) and Eq. (8), goes over into the Hamiltonian H,,,_,
of the magnon-plasmon coupling, which for the case of 7,; symmetry takes the following
form:

Hyp= ; {Al,k(ak‘x;—k+a;“;k)+A2,k(ak°‘:I-c+al-:‘x:—k)} SR (11)
where .
2nnei (hSNo\? k. + ik
Ajyvg = (—H,Cyp+4ES 2 U8 (12
16k = (—H,Cyp 24FSEy) . (Nm*) keo? (12)

In Eq. (12), the upper (lower) sign corresponds to the index 1 (2), N, is the number of
elementary cells of the crystal, a,, and a,; (a;; and a,+k) are annihilation (creation) oper-
ators of both kinds of antiferromagnons, #, and {; are defined as follows:

e = Up+0p, (13a)
Ck = Ug—0p, . (13b)

where 1, ‘and v, are certain coefficients diagonalizing the Hamiltonian of the antiferro-
magnet and are given by the following formulae [7]:

u; = cosh 9—2" (14a)
. o Ok
v, = sinh S (14b)
tanh g, = — — iLa (14c)
Hy
1422
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H, and Hg denote the anisotropy field and exchange field, respectively, and y, is defined
by the following expression

Vi = Z—l Z eik‘~(Rp—-Rq)’ (15)

{q>

where the symbol {g) at the summation denotes that the sum is limited to the z nearest
neighbours of the spin §, at the site R,. When deriving Eq. (11) we restricted ourselves
to one magnon-one plasmon processes only. Terms describing processes of higher orders
are neglected since we are interested in the problem of hybridization in which these terms
play no essential role.

3. Raman light scattering from hybridized magnon-plasmon modes

We start from a brief discussion of the problem of hybridization. Let us bsgin by the
total Hamiltonian H for the system of magnons and plasmons, mutually coupled due to
the interaction H,,_, given by Eq. (11) .

H= Y oy ak+2 hQrk“rk“rk"‘Z hQuerpot+ He . (16)
(k<ke)

The frequencies of both kinds of antiferromagnons are given by the expressions:

- H A 2 2 I —
hQ, e = gupHe I:<1+ H—E) ,—)’kJ +gugH,, a7
where the upper (lower) sign corresponds to the symbol 1 (|) and g is Lande’s factor. The
k. appearing at the first summation is a cut-off wave vector below which the plasmons
are well defined and which is much smaller than any vector from the Brillouin zone
boundary [19, 20]. Frow the dispersion law (17) it can be concluded that the magnon
branch in the magnetic field H, is split into two branches, one of which is shifted upwards
and the other downwards by an energy equal to gusH.. Th1s phenomenon allows us, by
way of the magnetic field, to bring the higher branch to resonance with the plasmon line.
Taking into account that under experimental conditions the investigation of system with
carrier concentrations higher than 104 cm=3 is simpler and that the plasmon energy
is in general larger than that of magnons one can omit in Eq. (16) the interaction of the
lower magnon branch, i.e. that of the type 1, with the plasmons. One can also neglect
the components of the form a,x,_, and ap ocf_  describing simultaneous annihilation and
creation of a magnon-plasmon pair. These terms do not contribute to hybridization in
the first order of the perturbation treatment.
Finally, the Hamiltonian of the system takes the following form:

H = Z fl(ukak ak+Z hQ kafkot,k+v hQ kaLkaJk

k(k<k:)

| +’k > {Al,kak “¢k+vA1,k.aka;_'l-c}, : (18)
(k<ke)

where the asterisk stands for complex conjugate.
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Having performed the diagonalization transformation

oy = e %k cos % ¢y pte” ¥k sin %’f Cak (19a)

ay, = €% cos —i—k i x+ ek sin % S (19b)
ay = —e'% sin% ¢y 1+ €k cos %’—‘ Cok (19¢)
af = —e "k sin%‘cf,k+e-i"’k cosﬂ—zkczk (19d)

we arrive at

_ + + + +
H =) hQuugog+ Y hQuajae+ D hojgeicict Y houcs i (20)
k . k(k>ke) k(k<ke) k(k<ke)

In Eq. (19) ¢y is defined by the expression A 5 = |44 x
in the first approximation by the following equation
2| Ayl
tan fp = ——-——. 2n
W — o)
The operators ¢y (c1 ;) and ¢, 4 (c3 z) are annihilation (creation) operators of two hybrids
with frequencies, in the first approximation, equal to

ha’1(2),k = % h(wk‘l‘Q;k)i% [4[A1,k|2+hz(91k'—a)k)2]%' 22)

exp (2ip;) whereas f8; is determined

1 1 ‘I =
1 2 3 4 5 6 7 prip3Xly

30 L

Fig. 1. Schematic picture of magnon-plasmon hybridization in antiferromagnetic semiconductors

ko, — the plasmon energy at: a = 105 cm3, ¢ = 1, m* = m (fwg = hwo-+fizk?; fiwo, = 54.8 cm-,

fir = 2.8x105cm™1A2, k. = 8x10-3 A-1); AQ; — a typical magnon branch (degenerate) without an

external magnetic field H (5Q; = hQo+ k%, f~ #8020 ~ 10 con™1A2, k2, = 48 cm™ — a denotes lattice

parameter); h2,; and k2, — the two magnon branches in a field H (H = 120 kGs); hw;x and hwa — two
hybrid modes
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The hybridized modes are shown schematically in Fig. 1. From Egs (19)-(22) it is obvious
that one of the branches of hybrids joins the magnon branch Q. (for k > k) at the point
k. (on the assumption that the crossing point of the dispersion curves lies sufficiently far
below k). Light scattering should now be expected to occur by way of excitation of one
of the hybrids.

Further considerations can be simplified essentially by taking into account that the
light scattering differential cross-section from plasmons is smaller by several orders of
magnitude than that from magnons. One can thus assume that the scattering occurs
due to excitation of a magnon and afterwards through energy transfer to the plasmon
system by way of magnon-plasmon interaction.

It is worth noting here that, by insertion of the clectric field of the light wave into the
Hamiltonian (7) instead of E, one obtains directly the Hamiltonian H,, _. of coupling
between the magnon system and radiation. The most essential part of this Hamiltonian
describing Raman scattering from one-magnon excitations is then given by the following
formula:

Hm*r = kkz , M(kO', Ia,) [(af-lt’—k_,_a;k—k’)b;—abk’a’

+(oc¢k,_k+oc;;{_k:)bkab,:‘,a,]+H.C., (23)

where
., mh (SN _ _ \*
M(ko', k O-) = iG"Ik’—k ? T wkwkl

X [elz\f’o"(e;cca + iel’éa') + elzfo'(el);'a’ + iei’o")]' (24)/

Above ¥ denotes the volume of the crystal, €r, — a unit vector in the electric field direc-~
tion of the photon with the wave vector k and polarization ¢ and @, is the frequency of
this photon. The Hamiltonian (23) is equivalent to the spin Hamiltonian proposed by
Loudon [7] for explaining light scattering from magnetic excitations.

Let us now revert to our Raman scattering study of the hybridized states, which are
superpositions of plasmon and magnon states. The Hamiltonian of interaction between.
the light wave and coupled magnon-plasmon system can be obtained by transition, in Eq.
(23), to the operators c,; and ¢, of Eqs (19a)-(19d). Taking into account that first
order Raman scattering originates in excitations with & approximately equal to zero,
we obtain the light scattering differential cross section R, and R, from hybrids w, , and
@, in the following forms:

5 (81>2 % cos? <ﬁ0> IMPP(N, +1)° F— (25}

LT ant g, B WY@, —@,— o, )2 + T2

: ()  sin® (%) L (23)

27 4n’h?\g, W@y~ By —w,,0)* + T2’
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where &, (g,) is the incident (scattered) photon dielectric constant, @ (®,) — the incident
(scattered) photon frequency N; and N, are the occupation numbers of the two hybridized
states, I is the half-width of the Raman line, which can be taken from experiment, and

M = —iGnhV ™ 'ny(2SN@,@,) [ €i(e5— ie}) +e5(ef —ie})] (26)

where the factor 7, can be obtained from Eqs (13a)-(14c).

Since scattering from “pure” plasmons is neglected one should obtain in the absence
of hybridization a Raman spectrum line related to excitation of a magnon with the fre-
quency 2, (we are not interested in the line at the frequency Q,). The behaviour of this
line becomes particularly interesting when the field H increases attaining the value at
which Q,y approaches wo. When the hybridized modes begin to appear, this line cor-
responds to the frequency @, o and becomes weaker and weaker to the benefit of the line
appearing beside it and corresponding to the frequency w, o. At the point at which
Q,0 = o, both lines should possess the same intensity, equal to one half of that of the
initial line. The behaviour described above is a simple consequence of Eqs (19a)-(24b).
This provides the possibility of an experimental search for the magnon-plasmon inter-
action as well as of a confrontation with experiment of the conclusions resulting from
the present paper.

4. Conclusions, and their discussion

In the present paper we discussed the problem of magnon-plasmon interaction and
its influence on Raman light scattering from one-magnon excitations in antiferromagnetic
semiconductors. We proposed a model of this coupling based on indirect (via spin-orbit
coupling) interaction of the spin system with the plasmon electric field, on the assump-
tion that the ground state of an ion in the crystal field is orbitally non-degenerate. From
the nature of the perturbation treatment performed here the conclusion is drawn that
this model leads to an insignificant coupling if the ground state of the free ion is of the
S-type. If L # 0, then assuming typical values for parameters occurring in Egs (6b), (12)
ie. E,—E, = E,—E, = 10°cm™, 1 = 10>°—10° cmt, 7= 10" cm3, No/N = 10%, e = 1,
m* = m, O|L,|a> = i, <O|D,la) = ea, = 10-** g*/* cm®/* s~* (a, — the first Bohr orbit
radius of the hydrogen atom), we estimate A, to be of the order of 10—10-2 cm™.
It is of great interest that the magnon-plasmon interaction is influenced by an external
magnetic field H which, if 1 >0 (C and F have the same sign) causes a weakening of the
interaction between plasmons and “|”-magnons. With 4 <0 (C and F possess opposite
signs), the situation is the inverse. The Hamiltonian obtained in the present paper concerns
the case of magnetic ions localized in environments of T symmetry, but can be easily derived
for other symmetries as well. The 7, symmetry occurs e.g. in antiferromagnetic semi-
conductors having the spinel structure for the ions localized in the tetrahedral positions.
If we omit, in 4 first approximation, the coupling of the ions in octahedral positions with
the field E (the ion is a centre of inversion), the Hamiltonian of the magnon-plasmon inter-
action in these compounds takes the form given in the present paper or, at least, a similar
form.
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The possibility of an experimental search for effects of magnon-plasmon coupling
is provided by the Raman light scattering from magnetic excitations in the magnon-
-plasmon hybridization region. The present paper gives the differential cross section for
such scattering and its dependence on the external magnetic field.

We have restricted ourselves to the case when the scattering occurs according to the
model of Loudon. Even if other scattering mechanisms prove to be more effective, the
qualitative behaviour of the Raman spectrum line in the field # will remain unaffected,
because it is determined by magnon-plasmon coupling constant, whereas magnon-two-
-photon coupling constant only determines intensity of this spectral line (Egs (25a), (25b)).
The differential cross section for scattering from the hybrids can then be very easily ob-
tained from that for magnons, performing transformation to the hybrid operators (as in
the present paper). This behaviour of the spectral line in the field H provides the clue to
the experimental study of the magnon-plasmon coupling.

The author wishes to thank Dr A. Stasch for reading the manuscript and several
helpful discussions.
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