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The correlation functions of the isotropic Heisenberg ferromagnet with arbitrary
spin were calculated. To this end the decoupling procedure was applied to Green’s retarded
commutator functions formed from orthogonal operators being solutions of the Liouvillian
(—ph ZS})" eigenproblem. In this way the procedure of Ishikawa and Oguchi was generalized

f

for the case of a spin S of arbitraty length in every site of the ferromagnetic crystalline lattice.
It resulted in the formation of a longitudinal correlation function, which differs from the
result of Liu and Siano for the ferromagnetic region. For T > T, the correlation functions
(SESTr> and <SpS3;> assume the same values and satisfy the basic sum rule. In the
long-range limit the correlation functions assume the Ornstein—Zernicke form with corre-
lation lengths being functions of temperature. The correlation lengths are convergent at
the phase transition point and the critical Fischer index equals zero.

. Introduction

The properties of correlation functions and especially those of longitudinal correla-
tions of the isotropic Heisenberg ferromagnet have been studied by several authors.
Tahir-Kheli and Callen [1, 2] solved the problem of higher order Green’s functions and
the function of longitudinal correlations computed by this means did not satisfy the
principal sum rule. In the paramagnetic region the correlation functions Sy St and
{87 8% ;> assumed various values. Liu [3] and Liu and Siano [4] computed the longitudinal
correlation function employing a linear response of the system of mutually interacting
spins to a small external time-dependent perturbation. This rather complicated method
predicts an isotropic behaviour of the correlation functions for T > 7T, and fulfillment of
the sum rule

e
= z (SES_i = S(S+1).

k
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In the ferromagnetic region a small 5% deviation from the sum rule is observed.
In the case of spin S = } the specific heat of the simple cubic Heisenberg ferromagnet
is negative from the left side of the transition point and the internal energy

{H)r=1, < {H)1=0-

Ishikawa and Oguchi [5] have proposed a new method of calculating the correlation
function ‘of a ferromagnet with spin S = } based on spin operator algebra. Use was made
of the method of two-time commutator Green functions decoupled according to the
method by which are neglected the highest cumulants of products of operators forming
the Green function being decoupled. The specific heat calculated in this way from the left
side of the phase transition point is also negative. This method permits one only to calculate
static correlation functions and this fact is one 6f its disadvantageous features. In this
work we made attempts to generalize the Ishikawa and Oguchi method for the case of
an isotropic Heisenberg ferromagnet: with an arbitrary spin length.

2. Green functions

The Hamiltonian of intefécting‘spins of the Heisenberg isotropic ferromagnet in an
external magnetic field directed towards the third axis assumes the form

H = —ph ;s}'— f; T (SFSy +5352), (2.1)
. g g

where J;, is the exchange integral between neighbouring sites, J, = 0 for f=g. We
define the assembly of Green functions for the system as [6]

G5,(0) = KLos 1,40 1579, (2.2)
Fi() = Lo 1,40) 15785 s (2.3)
where operators LY, 1« are eigensolutions of the equation
[—#h Z S;: Lj;+ l,a]— ~ ﬂhL{ﬁ 1,00 (2.4)
g

If the vectors |« are eigensolutions of the Hamiltonian — uh S} then the operators B
we may describe as the following form

K, ,=le+1><l, «=-S5,..,8-1 (2.5
and it shall be obey the commutator relations
[ Ls]- = 5fg(5pyL£,5;5aaL£,p)- (2.6)

The relations between spin operators and the operators La{, s assume the form

s S
S;‘-= Z Cgqu+1,w Sj—: = z CgL{;,awl’

a=-—5 =-S5

5 B ML == =_—=
(SRS et b = VSS+D—ofa+1). (2.7

a=—5
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The operator S‘} in the definition (2.3) means S}—(S}) where

1
(o) = —Z—Tr (eW’Y . X0),. p = RTNT, (2.8)

is the mean thermodynamic value with the Hamiltonian H of the isotropic Heisenberg

ferromagnet:
Equations of motion [6] for the Green retarded commutator functions G%,(E) and

Ff,u(E) assume the form

EG}Q(E) CS <La+1 a+1 a,a>5fg +HhG;g

CH2Y o ; Z 4 ﬁ((LI;;,/)LfH 1,154 £
] B==
s

N Z JPf z CSCS<<(L<1+1 at+1 L{x,a)L’;-}- 1,7|Sg_>>E

ot
- Z pr Z CiIs, p+1(casz— e o C 500 1S5 ks 2.9)
EF,(E) = ColTh+ 1,041~ u)S3>5fh_< at 1,650 2054

R RCYE WO A Uy
s

—ZJ,,f Z COC (Bt 1 041 —LL DL 41,1827 Dk

~ZJ” Z (6 AN (S L P B MY SN o I S (2:10)

In (2.9) for the Green functlon <L Lfﬂ Sy Y and A e L{a) LY, ,,18, ) we use
the decoupling

Ly Lo+ 1,68y >> & <L7s,p>G}’~g(E),
<<(L{z+ 1,a+1 _Lfa a)L7+ 1 yIS >> ~ <La+ 1,0+1 L{z,a>G;y(E)’

- ((L‘%,p’+1(Cf-1Lﬁ+1,u 1 cs+1La+2a) 1Sy > = 0. (2.11)

In (2.10) for the Green function ¢Lj LY, ¢F§3S,, Yeand KEL, L ,ﬁlﬁj Si > we shall
employ the Ishikawa and Oguchi [5] decoupling procedure in a spirit of the random phase
approximation

L5 4 1828y >>E ~ <L 7 880> GL(E) + Ly F3 (),
<<(L{;+1,z+1.'—L{z,a)L +1 'y|SsSh >>E : <<( a+ 1,0+ 1 Lfa)ss>>G h(E)

+<La+1,az+1_ ¢<1>Fpgh(E)’
E (SR IEETs CRBE e I S3S S S 0) (2.12)
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which is substantiated by a neglect of highest cumulants of product of operators forming
the Green function being decoupled. (See Appendix in Ishikawa and Oguchi’s work
or in [7].)

We shall use the isotropic properties of a ferromagnet assuming that the mean values
<Laf,, > are equal to each other at every site of the crystalline lattice. A translational
invariance of the Hamiltonian permits one to employ Fourier transformations

Gr.dE) = X e*ITIGHE),
F;'gh(E) - kz eik(f-g)eiq(f“h)Fi’q(E)’
q
Tpo = LN (AByy = 3 MTAB L, (2.13)

where k is the wave vector belonging to the first Brillouin zone. In the nearest neighbours

approximation
J, ,
Jk+qf(k9 q) % —J-— ka(ka q)
1 V]
k P

and after using (2.11), (2.12) and (2.13), the equations (2.9) and (2.10) can be linearized

;i_ls [(E— )3, +PiC3JJGUE) = P, (2.14)
5-1 }
o [(E - 68, ,+ PaCyJis o Fh o B) = A7, 2.15)
where
P} = CiLys 1,541~ Ly
wo = h+20J,, 0= i oLy (2.16)
and =

AZ = C:<(L,:z+ 1,+17" L,;,a)Sik> . <an+ l,aS:q>
=1l N
—CH X 101 —LeDSEDT, Y x C3GHE)+2 : > ) BLLy s S0 GE).  (2.17)
p=— ==

Solutions of equations (2.14) and (2.15)*take on the form
s
GI(E) = —f—_ny) —, (2.18)
1+, Y Cidi(E)
p==s ’
Sl
A+ Trig ¥

Ci[ASA(E)— 4345(E)]
N

Fj {E) = g (2.19)

S—1
(E=0q) (1+Jirq 3 CHG(E)
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where -
S
P'Y

E—wo '

A5(E) = (2.20)

We calculate the correlation function {S; S*,> from the Green functions GH(E) using
the spectral theorem [6]. Taking into account

P (S M= G S @S (2.21)

after the summation of the left side of (2.21) we obtain the function of transversal correla-
tions in the form

(SESIp =20(*%—1)"1 = 26N(gy), (2.22)
wherz
& = ph+20(Jo—Jp). (2.23)

The function of longitudinal correlations can be calculated by the following. means.
First we calculate the coordination functions (S5~ quI 1. from the Green function

Fy,, usmng the spectral theorem. Making use of the identity

il
E E SEJ =GR 224)

q
and summing all the coordination functions over g the following equations can be written
down

s

PS
Cil+)Xi—ClpXi™! = 1 E PXidy = =Py, S
B=-S
where
1 ,
A= > [+ NG INGr,),
aq
1 &, 8 -
"N D e VeI~ N 2
+
q 4 N
and
X} =<5, (2.27)
and

1
7= E N(ep)- (2.28)
k
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There are 28+ 1 coordination functions of the type X} and 2S equations (2.25). If the set
of equations (2.25) is completed with the identity

s
Y X;=0, (2.29)
y=-5
then we can found X7 from it. In the last step we make use of the relation
Zs X} = <SiSip, (2.30)
T
which comes from 2.7). The explicit form of the longitudinal correlation function is

2 . oM
RISy = et (2.31)
1+Mgny

o DYEICOR DWICON
3,3, ot L el T

2
M ,=-—. 2.32
1/2 1429 (2.32)

where

The expression (2.31) is the generalization of the result derived in [5] for an arbitrary
value of spin S and for the special case of § = } reduces to the form obtained by Ishikawa
and Oguchi [5].

3. The N-th moment of the z-component of the spin

Let us now derive very useful formulas for the N-th moment of the z-component of
the spin. The only assumption we shall accept is that the mean values <L‘,f,’ »» are the same
at every site of the crystalline lattice. Notice that we can calculate the correlation function
(S L a+1 > from Green functions G}(E). Let us define the function ¢, as

s, 1\
Poz(pa = N A_J <S a+1,a>' (31)
%
From the identity (2.24) and equation (3.1) ensues the set of equations
Pip, = CiL,,>, (G2
and
Z (Lye> =1, (3.3)

a=-—5
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where
I s ‘Cosz<L¢+ fat1—Lye) (3.4

The set of equations (3.2) and (3.3) have unique solutions

w3l e

L = <L55>H T = —5,...,5—1. (3.6)

From (2.7), (3.5) and (3.6) we get

(Y = <Ls,s>[ Z H 1+¢] 3.7)

When all ¢, are equal, as is the case for the isotropic Heisenberg ferromagnet, the equation
(3.7) significantly simplifies

= . g Y
US> = (L) [§”+ Z " (1’4%) ] (38)
y=—S

Equation (3.7) stands for the generalization of equations [8] which enables us to calculate
the N-th moment S° for the case of different g, i. e. for systems with single-ion anisotropy
of various kinds [9].

4. Thermodynamic properties

In the temperature region 7' < T, the magnetization (3.8) is given approximately by

2565+

4.1
3(1+2<p) @D
where
1 ﬂ&'k kT
142¢ = — cth— ~ —— I(1). 4.2
0= = Z 2 = o (€Y 4.2
I(1) is a well known Watson integral [10]. Substituting (4.2) into (4.1) we get
25(S+1
( ) 4.3)

T AL
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Expanding cthx in (4.2) up to the second term we obtain

T 1/2
o [1- ?] (44)

o
hence the critical index B = 4. The magnetic susceptibility is defined by lim i X

0 U
From (4.1), (4.2) and (4.3) we get
TR I(1
= —(l - 4.5)
RS ()
where
: 1 L (4.6)
== 1+ oo :
For the Watson integral I(Y) the expansion
1Y) = () —AV1=-Y+..., @.7)
g . An i 3.3
is valid [10] and for simple cubic lattice s. c. A= —\/—5 Hence
7
o P 4.8
7 il (“4.5)
and the critical index y = 2.
For temperature 7 > T, one can assume
kT
"
and
Mg~ ¢~ *+0(p7%). (4.10)
Using (4.9) and (4.10) we obtain
2kTy,
SeSIy =— . 4.11
GeSEO= (4.11)
and
kT
(Sisi = X (4.12)

1+2x(JO—Jk)'
The correlation functions are isotropic in the paramagnetic region

2(S3S%4> = Sk SIw), (4.13)
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and the sum rule is satisfied

I {SS_> = S(S = 1) 4.14)
% 3 . \
In the long-range limit, i. e. for 'small Wave vectors »
alk] <1, s.c. . 4.15)
the transverse and longitudinal correlation functions are of the form
2
SpSty =2y —=—, 4.16
< k k> v 1 +Kik2 ( )
i
SESP Dy =v—4 4.17
< k k> v 1+Kﬁk2 ( )
0 6 kT
where v = ——,
azJo
J 2
K2 =1k = —°3“— % (4.18)

are the correlations lenghts divergent at the point of phase transition. The result of (4.16)
and (4.17) agree with those of [11].

5. Discussion

In order to obtain static longitudinal and transversal correlation functions of the

isotropic Heisenberg ferromagnet with arbitrary spin, the use was made of the new method
of decoupling of the higher order Green functions. The Ishikawa and Oguchi method [5]
was generalized. It was found that the specific heat is negative from the left side of the
phase transition point for spin S = 1 only. The correlation functions in a long-range limit
assume the Ornstein-Zernicke form with correlation lenghts x|, x, divergent at the phase
transition point. \
We have applied our method for the function of longitudinal correlation (2.31) for an
arbitrary spin and the result we have obtained in (4.12) agrees with that [4] in the para-
magnetic region. We have also generalized the expression [2] for the N-th moment of the
z-component of crystalline lattice spin vector for the case when besides the exchange
interaction the single-ion type anisotropy is present.

The author is indebted to Professor A. Pawlikowski and Dr W. Borgiet for their
valuable remarks.
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