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The temperature variation of Debye-Waller factors for five beec metals-sodium, x-iron,
chromium, molybdenum and tungsten have been studied using the lattice dynamical model
which considers short range pairwise forces effective up to second neighbours, long range
screened Coulomb forces on the lines of Krebs and describes the ionic lattice to be in equili-
brium in a medium of electrons. Compurational results have been compared with the existing
experimental data in terms of the temperature parameter Y of the Debye-Waller factor,
the effective characteristic temperature ©@ys and the mean square displacement u2 of the
atoms. The calculated results have been found to be in very good agreement with the avail-
able experimental data.

1. Introduction

It has been shown experimentally that there is a reduction in the intensity of X-ray
diffraction maxima with the rise of temperature on account of thermal vibrations in a
crystal. The effect was first considered theoretically by Debye [1] and subsequently modi-
fied by Waller [2] who showed that this decrease could be expressed by an experimental
factor exp (—2W). Blackman [3] has shown that measurements of the effect of temper-
ature on the diffraction of X-rays and neutrons as described by the Debye-Waller (D-W)
factor, exp (—2 W), can be used to obtain information on the vibrational spectrum of
solids. Study of the temperature dependence of this effect, or rather the change in mean
square amplitude of vibration with temperature is very important for the understanding
of many temperature dependent crystal properties. In the past, considerable interest has
been shown in the experimental study of the thermal variation of the D-W factors of me-
tals by means of X-ray and neutron diffraction, e. g. Ref. [4]. Several authors [5-9] have
used different phenomenological models to compute the exponent (2 W) using their
vibration spectra. But the main drawback with these approaches is that they do not satisfy
the symmetry requirements of the lattice in the sense that the computed frequenmes are
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not periodic in the reciprocal space due to the neglect of the translational invariance of
the lattice, and further, none of the above models satisfy the crystal equilibrium. In-addi-
tion to this, in computing the D-W factor, the term corresponding to the zero phonon
wave vector (¢ = 0) has not been considered by these workers, since the value of the
wavevector in this case corresponds to a nonvibrating lattice for which the D-W exponent
vanishes and, therefore, the contribution of the central part of the Brillouin zone (BZ)
has not been taken into account. It would, therefore, be preferable to conmipute the D-W
factors using a more realistic lattice dynamical model.

Quite recently, Kulshrestha and Upadhyaya [10] suggested a new lattice dynamical
model for cubic metals. This model overcomes the above shortcoming by including
electron-ion interaction on the basis of the Krebs [11] theory to the ion-ion interaction
through second neighbour pair potential [12] as the bare electron ion interaction reduces
the effect of long range Coulomb interaction to the short range forces between the ions [13].
Also the model describes the crystal in equilibrium under zero external stress as has been
emphasized by Thomas [14] that the elastic constant theory applies only to the solid in
equilibrium and that an equilibrium condition must be imposed explicitly for empirical
models for lattice cohesion. In recent studies we have successfully used this model to in-
terpret various lattice dynamical properties, e. g. phonon dispersion, frequency spectrum,
Debye temperature, thermal expansion, and transport properties of cubic metals. The
present paper reports on the study of temperature variation of the D-W factor, character-
istic Debye temperature, and mean square displacement of atoms in five bec metals viz.,
sodium, «-iron, chromium, molybdenum and tungsten.

2. Theory

The contribution to W consists of two parts:
(i) the phonon-dependent part (W’) which is obtained from knowledge of the whole
vibration spectra, and
(ii) the contribution from the central part (W”) of the BZ, corresponding to g — 0, is
evaluated in the Debye approximation.

Thus the D-W factor exponent W may be written as

2W = 2W +2W". ¢))

Part (i): In the harmonic approximation, the exponent of the D-W factor is related
to the mean square displacement of the atoms and is given by James [15]

2W = (IS - u(m)*), T @

where u(n) is the displacement of the n™ atom and S is the difference between the unit wave
vectors of the scattered and incident wave. From a knowledge of the nature of the time
dependence of atomic displacements and the average energy of phonons in the mode ¢,
the amplitude A of mode ¢ can be expressed as

(n 2)h

A , 3
A =T 3)
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where m is the mass of the atom, N is the total number of unit cells in the crystal, w, is
the angular frequency of the normal mode of wave vector ¢ and n, is the average occupa-
tion number of the g lattice mode and is given by the Planck relation

ha, 17t
n, = {exp[kBT] —1} g “

where kg is the Boltzmann constant and 7 the absolute temperature. Relation (2) can be
written in terms of the eigenvectors and eigenvalues of the vibrational spectrum as
(writing W’, the phonon dependent part, in place of W),

o = Z (S0 (M t3) 5
mN Wy p

»P

a.p
where e, , is the polarization vector for the p™ polarization of the ¢** lattice mode, and
o, , is the angular frequency of the ¢, p lattice mode. From consideration of the cubic
symmetry of the lattice [16], the factor (S - e, ,)> may be replaced by its average value
outside the summation, so that Eq. (5) reduces to

7 167%h /sin 6\? 1 (n 1) ©
=] — %), 3
3mN \ A w,p 72

a.p

where 0 is the Bragg angle and A the wavelength of the incident radiation.

Part (ii): Since all the modes are acoustic for a monatomic lattice, the angular fre-
quency o is zero when g = 0. Following Barron and Smith [7], we have avoided this
singularity in the sum by replacing the contribution to the sum at ¢ = 0 with an integration
of the energy term, (E/w?) (of the mode of lattice vibration)

E = ho[n,+1], Q)
1
over a sphere of volume equal to —— —— of the BZ near ¢ = 0. It is assumed
20x 20 x 20

that the frequency in this region is given by the average velocity times the wave vector.
The zero phonon contribution (W’’) is then written as

ald L [sin 677
W' = — [D(C)+2D(C] | — | , ®)
Im A
where
znkmnx
o1
D(C) = re J 4n*hckdk{n,+%], ©)

0

Cy, is the average velocity for the longitudinal phonons and Cy is that for the transverse
phonons in this region, k., is the radius of the sphere of integration and is given by
4r

= k2. =‘§313—5 (volume of BZ)
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-or
1 /3\'?
kmax B rvel 3
20a <2n> (10)
.D(C) can be reduced to
1 tdt 1 .
D(C)=p S 7= +7 px, 11
0
‘where
47k T Koy 42 W Chigay .
b= Cz ’ - kBT > ( )
and
B 2nhkC
e

The value of the integral in expression (11) can be substituted from standard tables.
From Eq. (2), the mean square of the total displacements of an atom from the average

position is given by
— 3w/ A 2 (13)
u'=—{——1,
87> \sin 0
The temperature dependence of the D-W factor, considering a Debye model of the
solid, can be written as

- 487°h3T B0+ x\ /sin 0)2 u
= e X — —
mkg©® 4 A)’ (14)

-where @,, is the Debye characteristic temperature, x = ©y/T and &(x) is the Debye
integral function defined as

x

A e - s
V=Y lap@-1 s
0
“with
hw
z =
kT

“The above formula has been used by different workers for interpreting the experimental
data from X-ray reflections for the evaluation of the D-W factors.
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3. Numerical computation

The evaluation of D-W factor exponent 2 from Egs. (1), (6) and (8) at different
temperatures has been done by Blackmann’s sampling technique [18] for a discrete sub-
division in wave-vector space. To have a fairly large survey of frequencies, we have consid-
ered a mesh of evenly spaced 8000 wave vectors in the first BZ obtained by dividing the
first BZ into 20x 20 x 20 miniature cells with axes %5 of the length of the reciprocal
lattice cell. Symmetry considerations reduce these 8000 points to only 256 non equivalent
points including the origin, lying within an irreducible 1/48 part of the first BZ. The secular
equation determining the vibrational frequencies of metals was solved for all these points
and each frequency so obtained was weighted according to the symmetrically equivalent
points. The value of maximum frequency was then obtained and 50 equal intervals were
made and the number of frequencies lying within each of the intervals were counted after
duly assigning proper weights to them. Thus the histogram of the vibrational spectrum

TABLE 1
Lattice constant and elastic constants for cubic metals used in the computation
N N -Lattice' Elastic constants
Metal constant (10'* dyn/em®) | Reference
(4) Ciy Ciz Ces
sodium 4.2400 0.808 0.664 0.586 [34]
o-iron 2.8662 23.310 13.550 11.780 [35]
chromium 2.8792 35.000 6.780 10.080 [36]
molybdenum 3.1468 44.077 17.243 12.165 {371
tungsten 3.1650 52.327 20.453 16.072 1371

was obtained. The mid point of each frequency step was taken as the representative of
any particular interval whose statistical weight was given by the number of frequencies
lying in it. Using this histogram, the D-W factor exponent 2W = 2W'4+2W" at various
temperatures was calculated from Egs. (6) and (8). The mean square displacements of
atoms and the effective characteristic temperature Oy at different temperatures were
evaluated from Egs. (13) and (14), respectively. The elastic constants and other relevant
parameters for the metals used in the calculations are given in Table L.

4. Comparison with the experimental results

The results have been compared with the experimental data in terms of the D-W
temperature parameter defined as

A 2
Y = < - ) QWo—2Wy) xlogype, (16)
sin 6

where W, and Wy are the values of W at temperatures 7, and 7, respectively. The param-
eter Y isindependent of 1 and 6, being completely determined by the vibrational spectrum,
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and is easily found from the X-ray intensities of the Bragg reflections. If I and I, are
the meassured integrated intensities of a given reflection from the crystal at temperature
T and T,, respectively, ther

IT _ exp(_2WT)
I, exp(—2Wp)~

4 21 > Ir ( A 2(2W 2Wr) x1 =Y 18
—_— 08. —_ = —— — X = . \
sin 6 0 I, sin 6 0 DU ' (18)

The numerical values of Y, u? and © u at different temperatures for sodium, a-iron, chro-
mium, molybdenum and tungsten are presented in Fig. 1-5 respectively. For comparison
the corresponding values deduced from various X-ray measurements have also been
plotted.
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Fig. 1. Variation of Y, u2 and @y with temperature for sodium; solid curves — present calculation

(A) Sodium: The effect of temperature on the intensities of X-ray reflections from
a single crystal of sodium has been experimentally studied by Dawton [19] in the temper-
ature range 117-370 K. He has measured the intensity ratio (I;;,/Iy) at three different
temperatures 180, 291 and 368 K for a chilled crystal. These ratios were found for (400),,
(310), (220), (200) and (110) reflections but Dawton suggests that among these the observa-
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tions for the (400), (310) and (220) reflections are the most reliable. The average of the

values of (4/sin 0)? log,o (Ir/Io) = Y, u? and @, for the above three planes with T, = 117K
has been plotted in Fig. 1. The theoretical results are found to agree very well with the
experimental measurements.

(B) a-iron: The temperature dependence of the D-W factor for a-iron has been
studied by X-ray diffraction [20-22] and y-ray resonant absorption experiment [23].
The X-ray measurements of Haworth [21] covered the temperature range 286-1190 K
by making integrated intensities and peak heights measurements for the diffraction line
(220) for an iron spectrum. The results show large scatter asscciated with crystal changes
brought about by prolonged annealing. The observed X-ray intensity measurements for
iron by Ilyina and Kristakaya [20], and Herbstein and Smuts [22] refer only to room
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Fig. 2. Temperature variation of ¥, u2z and @y for a-iron; solid curves — present calculation

temperature and are, therefore, not selected for the present comparison with our computed
values. The experimental observations of Haworth [21] are plotted in Fig. 2 along with
a few experimental measurements of Debrunner and Morrison [23] in the temperature
range 293 to 573 K. The theory agrees very well with the low temperature observations
[23] but appears to be in somewhat disagre:ment with the observations of Haworth [21],
and the discrepancy may be attributed to large scatter in the experimental points which
is particulatly striking in the temperature range 600-1000 K and hence these measure-
ments can not be heavily relied upon for our present comparison.
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(C) Chromium: The integrated X-ray intensity measurements for a single crystal
of chromium at different temperatures have been reported by Wilson et al. [24] for the
temperature range 100 to 520 K. These are corrected for thermal diffuse scattering as well
as changes in the lattice parameters. These experimental measurements have been expressed
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Fig. 3. Temperature dependence of Y, 22 and @, for chromium; solid curves — present calculation

in terms of the characteristic Debye temperature @,. For the purpose of the present

A\ I
comparison, we have calculated the values of < - 0) log,o (—IT—) = Y as a function
sin 0

of temperature from the corresponding value of @,,. The values of ¥, »* and @,, deduced
from the measurements of Wilson et al. [24] are plotted in Fig. 3 with T, = 298 K.

A reasonably satisfactory agreement in the theoretical values of Y, u? and O, with the
experimental observations is obtained.

(D) Molybdenum: The temperature dependence of the intensities of X-ray reflec-
tion for a molybdenum crystal was experimentally studied by Korsunskii [25] in the
temperature range 100—400 K, by measuring the intensity ratio I,g,/I; for the (232)

A\ I
and (322) reflection planes. The measured values of (s_m_f)> loglo(l—T) = Y for these
.0 —_
two planes, with reference temperature T, = 291 K and the corresponding values of u?
and @, along with the theoretically calculated values are shown in Fig. 4. The theoretical

values of ¥, u? and ©, agree quite satisfactorily with the experimental ones..
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Fig. 4. Temperature variation of ¥, u2 and @y, for molybdenum; solid curves — present calculations
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552 5

(E) Tungsten: Geshkq [26] has studied the temperature variation of the D-W
factor by X-ray intensity measurements in the temperature range 400—850 K for the (310)
and (321) reflection planes of a tungsten crystal. We have plotted the measured values

I,

sponding values of u? and O, along with the theoretically calculated values in Fig. 5.
Reasonably satisfactory agreement between theory and experiment is observed.

A\ Iy :
f “nd logio| — | = Y, with reference temperature T, = 291 K, and the corre-

5. Discussion

The present study shows that the D-W temperature parameter Y obtained from the
model of Kulshrestha and Upadhyaya [10] provides a satisfactory explanation of the
observed temperature variation of the X-ray intensities of Bragg reflections up to a certain
temperature. In the high temperature region the experimental values of Y are consistently
higher than the theoretical ones. This discrepancy between the theoretical results and the
experimental data may be attributed to the neglect of the temperature variation of the
vibrational frequencies [27] and to other anharmonic effects [28-33]. Moreover, the
temperature variations of the elastic constants and lattice parameter have not been taken
irito account in’ the present study. With an increase in temperature, the normal-mode
frequencies decrease because of thermal expansion. This effect depends upon the Gruneisen
parameter which varies with temperature. However, a detailed study incorporating the
Gruneisen parameter and the anharmonicity in lattice vibrations, though very much
desired for the interpretation of the D-W factor of solids, has not yet been attempted.
As things stand, it emerges from the present study that the temperature variation of the
D-W factor of bec metals can be véry satisfactorily explained by the present model. Our
results are undoubtly superior enough to eclipse those obtained earlier for various existing
lattice dynamical models.
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