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The influence of anharmonism, in the pseudoharmonic approximation (pseudo-
harmonic phonons), on the electron properties of the nondegenerate s-band has been inves-
tigated. The s-band is described by the Hubbard model. We have considered the case of
weak coupling between electrons and lattice vibrations. Pseudoharmonic phonons renor-
malize the s-bandwidth making it temperature dependent. (A simple cubic lattice is considered
for simplicity.) The numerical calculations, based on the Debye model for the lattice, show
that the s-bandwidth slowly decreases with temperature. It seems that such a behaviour
of the bandwidth should be qualitatively independent of any approximation. It has been
shown that anharmonism alone cannot describe the insulator-metal transition in the frame
of the Hubbard III approximation for a half-filled band but a metal-insulator transition. In
this connection an explanation of the metal-insulator transition observed in V.03 and Ti,O;
is suggested. Finally, the influence of the anharmonism (pseudoharmonic approximation,
weak coupling between electrons and lattice vibrations) on the dc conductivity of the Mott
insulator is discussed. The numerical calculations, based on the Debye model, show that
the anharmonism enhances the conductivity at all temperatures.

1. Introduction

Many properties of solids depend on the influence of phonons on the electron system.
This problem has been investigated by many authors. It was shown [1-4] that the coupling
between electrons and phonons in materials with narrow bands is not so strong as in mate-
rials with wide bands. Therefore it seems that in the first case the influence of phonons on
the properties of the electron system is small. Recently Barma and Bari [5] have investigated
the influence of phonons on the properties of the electrons of the nondegenerate s-band,
described by the Hubbard model [6]. They have shown that phonons modify the temper-
ature dependence of the conductivity for a Mott insulator. These authors have taken the
Hamiltonian of the lattice in the harmonic approximation. The hopping integral in their
paper was expanded in the Taylor series including both the zero- and first-order terms
1'13 the displacements of the lattice atoms.
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However, we can take into account all terms in the expansion of both the potential
energy of the lattice and hopping integral with respect to atomic displacements. In the
present paper we investigate the influence of all these terms on the electron properties of
the nondegenerate half-filled s-band, described by the Hubbard model [6]. For simplicity
we consider a simple cubic lattice and we use the well known Green’s function method [7].
It should be noted here that an analogous treatment of the anharmonism was worked
out earlier in papers [8-10] and applied to ferromagnets and quantum crystals. In the
present paper we shall follow the work of Konwent and Plakida [10]. These authors have
considered the Heisenberg ferromagnet and treated the anharmonism of the lattice in the
pseudoharmonic approximation. We also use .the pseudoharmonic approximation and
the simplest decoupling scheme of the higher order Green functions. This scheme is only
valid for weak coupling between electrons and lattice vibrations (see (9), (10) and (11) of
Section 2 for details).The pseudoharmonic approximation renormalizes the hopping
integral (7j; - T;;) making it temperature dependent. This means that the bandwidth
is also temperature dependent (4 — A). In order to discuss the electron properties of a
band (insulating phase, metallic phase, metal-insulator transition) with changing temper-
ature we have to make an analogous approximation of the one-electron Green function
to that of Hubbard III [11] (or the CPA formulation [12]). This approximation can easily
be made. It suffices to replace T;; — T, ; (pseudoharmonic approximation and the simplest
decoupling scheme (9), (10) and (11) of Section 2) in the suitable expression for the one-
particle Green function in Hubbards paper [11] and we obtain the desired resuit. In order
to perform the numerical calculations of the bandwidth as a function of temperature
we have to make further approximations. As the simplest approximation of the lattice
Hamiltonian we use the Debye model. When taking into account three acoustic branches
for the simple cubic lattice we find that the bandwidth slowly decreases with temperature.
It seems that this. result is physically reasonable. We feel that it should be qualitatively in-
dependent of any approximation. We then discuss, analogously to Ref. [11], the possibility
of obtaining the different phases depending on the ratio A/U where U is the Coulomb
integral. The only difference from Ref. [11] is that in our treatment the bandwidth is
temperature dependent. Keeping U = const we obtain two possibilities. The first of them
is the appearance of the insulating phase at all temperatures. The second one is the
metallic phase up to T, and the insulating phase above it. The second case is a little
analogous to that given by the small polaron theory [15-17, 19].

According to experimental data the oxides and sulfides of the transition metals show
insulating behaviour at low temperatures and metallic behaviour above a critical temper--
ature. Our result disagrees with these experimental data. The anharmonism cannot ex-
plain the insulating behaviour -at'low temperatures and the metallic behaviour at higher
temperatures. But there exist some substances as V,0; and Ti,0; (cf. [18, 20-22]) which
are insulating at low temperatures, exhibit an insulator-metal transition and thereafter
come back to the insulating phase. We suggest that anharmonism can explain the proper-
ties of these substances after the metallic phase is reached. '

‘Finally, wecalculate in the pseudoharmonic approximation and in the case of weak
coupling between electrons and phonons' the dc conductivity of the Mott insulator. The
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numerical calculations, again assuming the Debye model for the lattice, show the enhance-
ment of the conductivity compared to that calculated when there are no lattice vibra-
tions. '

2. Pseudoharmonic approximation in the anharmonic crystal

We consider a crystal with a simple cubic structure containing N atoms described
by the Hamiltonian

H = H|+HH, (1)
where
P2
H = g Sir VR Ry, ®)
and
L v ) U
Hy = T jCisCi0+ ) Righ;— 4. (3)
ij ia

[

The Hamiltonian (2) describes the lattice of the crystal (its kinetic and potential energy).
The Hamiltonian (3) describes clectrons of the s-band. If we write R,, = RS+ u,, where
R? is the equilibrium position of the atom m and u,, a small deviation from it and expand
(2) and (3) in a Taylor series (cf. e. g. [10]) we obtain '

1' P31 1 ¢ %y @, 0 0N, «,
H, = o = (Vi - Vi VRS ... RY)Juss, .. uge, 4)
m n=0 MY ... Mg
A1 ... &n

and

. o) A . ] . B
HH‘= ZZH—' : [Vit ... VT3] (uf —uf) ...
B 4 m=0 a1 e U

U
X (u‘}‘f‘—ujf")c,-“;cj,+ — Y‘ Rishi_ g )
' 2 /44
T = T(R?—RJ)). (59

In order to obtain the thérmddynamical properties of the crystal it is convenient to in-
troduce the phonon Green function

F(1=1) = —i0(t=1) <[ui(®), wb(t)]> = Cust) [ul (1) )
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and the electron Green function .
G (1=1) = —iB(t—1') {few®), )} = Ceult) [ ¥

After performing the time Fourier transformation we obtain the following equation for
the phonon Green function

E’F* (E) = ;"’M MZ Z [V“V::;

x VI V(R] ... RYY] Cus, ... uf,,';[um))E

1 1 o Y701 on 0
+ M 'n_!‘ [vaml see Vm"ij]
Jjo n=1 - 7R 2

X <<(u:zn1 - u‘o;l) 000 (ufrr w u_‘;") (cr-n‘-a'cja - cmo'cj_'tr) |uip;t’>>E' (8)

We use here the pseudoharmonic approximation [9]

Quy ... ulub e & .;1 (“i]”ﬁ:)};(l;l u;», ©®)
iy ooty = nllugusy o Uy gy, (10)

Analogously to paper [10] we perform the following decoupling
<<(ua1 _ual) ( Uy — 65”) (Cr:o‘cjd_cma'c;') [u£'>>E
~ <<(u:!nl ou) ( e Ofn) ]ugt'>>E<cr-:1_acjc_cch_;':'>‘ (11)

We define the space Fourier transformation

i .
F:!np;'n'(E) = —m Z ez,sez,s'Fk,s,s’(E)elk ’ (RMO_RMIO)’ (12)
k.s,s
where the k-summation runs over the first Brillouin zone, s and s’ labels the phonon
branhes and e, ; denotes the polarization vector of the phonon. Making use of (9), (10),
(11) and (12) we get

O
F 5,8’ E) = — — » 13
ko B) = ol - ) (13)
where
1
Wis = /% o e Bt ROVETT(RY .. Ry)
Jjood

+ (1~ * B RN Toni 2 {CoroCie = CmaClad 1 (14
-2
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and :
V(RS ... R}) = exp G2 Cufup)VivalV(RY ... RY), (15)
2 8 ap .
T,; = exp {3 ﬂXﬂ: (up —uf?) (Ui —uPHVLVE T, - (16)

According to the spectral theorem for the Green function (13) it is easy to obtain the phonon
correlation function

1 as ﬁs D s ik -
Cululyy = N E e;’ %2 cth (2—1{0) gt Bm® =R, 17
i Wgs N

k,s

We should now calculate the electron Green function (7). In order to do this we should
make the same approximation as in (9), (10) and (11) for the higher order Green functions.
We follow paper [11]. We obtain the same formula for the electron Green function as
in [11] the only difference being that we have to replace the hopplng integral T;; therein
by T;; as given by formula (16).

3. Temp_e%ature ;depending,bandwidth in_the pseudoharmonic approximation

We define the space Fourier transformation of the hopping integral (5') as usually

(cf. [6])
o=t E (6, — To)ei®” RO-R), ) o us)
and .
eq—TO 3 (R-OZR %) Tige—iq'.(Rio_RjO)a (19)

where g, is the s-band energy and T, = T}. Eq. (19) leads, for the simple cubic lattice
restricted to the nearést neighbours, to the well known result

4
g~ Ty = < (cos g,a+cos g,a+cos g,a), (20)

where 4 is the bandwidth of the s-band and a is the lattice constant. According to (18)
and (19) the space Fourier transformation of the hopping integral (16) is

6«1_T0_ = E . Tije—tq-(RgO-Rjo) zﬁ E . % (sq"_To)

< (RO-R;0) 7  (R°-R;%)

% exp { _% }ﬁ% | <(u1131 ’__u?l) (uliﬂz = ugz)>q'ﬂ1q'ﬁz}ei(?' -9 (Rio_RJO), 21
I IR
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where g,—T, is given by formula (20). Taking into account (17) and performing the
summation over (R —RY) we get

e8,—To= Y (4;cosqa+B;sin ga), (22)
i=x,nz
where
2 I
= (g —To) exp 1 — alP(x)q'"1q ﬁ’} cos gla (23)
q B1B2
2 ) .
=~ ) = Toexpi— ) a"P(x)q"q"singla (24)
P 8162
and
ﬂl B2 N :
k.a
a"P(x) = Gshs otn | 26 sin? (<22 ) | 25
) NMa,, \20)"" \2 25)
k,s x

Analogously to (23), (24) and (25) we may deduce the formulae for Ay, A,, B, B,
a®P2(y) and a*f%(z). Tt is easy to calculate the bandwidth of the s-band by finding the
maximum and minimum of (22) as a function of ¢. This gives the bandwidth
A=2 % A+BH" “ (26)
i=x,9,2
As will be seen from (23), (24) and (25) this bandwidth is temperature dependent due to
pseudoharmonic phonons.

4. Numerical calculation of the bandwidth as a function of temperature and the Metal-
Insulator Transition

The calculation of the bandwidth (26) as a function of temperature is very difficult
because we need to know w;  and e, as a function of-k, where wy, is given by the
very complicated formula (14) and e, is in general not known. For simplicity we assume
that the lattice of the crystal can be described by the very well known Hamiltonian

H, = Z:wk,s(alj,sak,s'i_%)' (27)
»§

- But even in this case the calculation of the bandwidth is still not a simple task. To
define w; ; as a function of k£ we assume the Debye model for the heat capacity of the
lattice. Since we considered a simple cubic lattice we have only three acoustic branches
with @, = vk(s = 1, 2, 3), where v, is the sound velocity. We assume that the polariza-
tion vectors e, ; are directed in a way such that ey 3 is parallel to k, e, 1, ¢, 5 are orthogonal
to k,e,; L e, leg| =1 and for s = 1,2 we have v, = v, = v, (transverse branches)
and for s = 3 we have a longitudinal branch with velocity v; = . Under these assump-
tions the numerical calculations were performed. We can change the sums over k and g to
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integrals, estimate the parameters v, v;, a, M, 4 (see (20)) and the radius of the Debye
sphere k... Fig. 1 shows the resulting temperature dependence of 4. We see that A
behaves quite linearly and decreases with increasing temperature. For 7 = 0 K the band-
width A is greater than 4 by about 4/6. For more complicated crystal structures with
more than 1 atom per unit cell there exist optical phonons, too. In this case we expect
a sharper dependence of 4 on T. For a half-filled band Hubbard has shown [11] that

L =l ———=-c0Zfk—=xcr —l |
500 1000 1500 2000 T

Fig. 1. Dependence of 'the bandwidth on temperature

the density of states depends on the ratio A/U2. 4 and U in his considerations were
temperature independent. In our treatment we have A temperature dependent due to
pseudoharmonic phonons and U temperature independent. Assuming U = const and 4 to
be temperature dependent we can obtain two possibilities: an insulating phase at all
temperatures, as well as a metallic phase at low temperatures and an insulating phase at
higher temperatures®. We see that the second. possibility is in disagreement with the ex-
perimental results [18] and reminds one a little of the prediction of the small polaron
theory [15-17, 19]. Although we have considered only the simplest pseudoharmonic ap-
‘proximation, it seems, however, that the anharmonism alone cannot give the insulating

! The following values of parameters were taken:: oy = 950 m/sec, v; = 2000 m/sec, a = 5.63 A
(NaCl), M = 3.84 - 102* g(Na), 4 = 3 (arbitrary unit), kmax = 0.69 A-1, o ;

2 Recently Sakoh and Shimizu [13], using the functional integral method with the static approximation,
have shown that the density of states for the Hubbard model (without phonons) in the case of a half-filled
band is temperature dependent. These authors say that the Hubbard treatment [11] is valid only for
T = OK, which is not true. The Hubbard treatment is true for 75 OK but the density of states is temperature
independent. The functional integral method used by these authors in the static approximation gives for
some values of the Coulomb integral U a negative specific heat (see e.g. [14]). Calculations of the magnetic
susceptibility may produce unphysical results. i

3 It depends on the choice of U. For U = 1.7517 and A(T' = 0) = 3.5034 we obtain the insulator
phase at all temperatures. After choosing U ='2.4773 and A(T = 0) = 3.5034 we obtain a metallic phase
up to Ter = 1516 K and insulating phase above.
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phase at low. temperatures and the metallic phase at higher temperatures in the frame of
the Hubbard III approximation, but when the metallic phase is reached it leads with in-
creasing temperature to a gradual transition back to the insulating phase. It is known from
the experimental data (cf. [20, 21]) that V,O; is an insulator at low temperatures and at
about 160 K a transition to the metallic phase occurs. At 550 K, however, a gradual
transition back to the insulating state takes place. Quite an analogous situation was found
in Ti,O;. According to [22] the transition to the metallic state occurs at 660 K and
a gradual transition back to an insulating state at about 1000 K. The existing theoretical
models [23-28] are Hubbard-like. Because the back transition takes place at rather high
temperatures, in our opinion the transition from a metallic to an insulating state can be
caused by the anharmonism in the same way as described above for the Hubbard model.

5. Pseudoharmonic phonons and conductivity of the Mott insulator

There were many attempts to calculate the electrical conductivity for the Hubbard
model. Most of them were based on the well known Kubo formula [29]. Because the
conductivity o is represented by a two-particle Green function we can determine
the conductivity only for some special cases. Bari, Adler and Lange [30] have calculated
the conductivity in the atomic limit only. Kubo [31] has used the Kubo formula and the
decoupling procedure introduced by Hubbard [6] and Sakurai [32]. Kikoin and Flerov
[33] have presented in their paper another type of decoupling but it leads to the same
result as [31]. Bari and Kaplan [34] with the aid of the Kubo formula have calculated

o
the conductivity in the limiting case lim —-. Barma and Bari [5] have considered the
420 -

coupling of narrow band electrons to lattice vibrations and the electrical conductivity
for the Mott insulator. Eswaran and Kimball [35] have presented the calculations of the
conductivity in the strong interaction limit in the presence of impurities. Nolting [36]
has proposed an approximate expression for the conductivity by the method of spectral
moments. His expression reproduces all limiting cases which can be calculated exactly.
Recently, many authors try to calculate the electrical resistivity rather than the conduc-
tivity (cf. e. g. [37, 38]. Very recently De Marco, Economou and Licciardello [39] have
calculated the dc conductivity for the Hubbard model by using a very restrictive approxi-
mation.

We now calculate the conductivity of the Mott insulator in the presence of pseudo-
harmonic phonons. We select the approach of Bari and Kaplan [34]. According to the
Kubo formula the conductivity is given by

=) 1/6 o &
1 . . . . . .
O'((D) s 2_7/ J‘ d‘z:e"’” J di(]el‘H(T'l'l).)Je‘—lH(‘l:+ll)>, (28)
where the current operator
' J = ""iez (Ri—Rj)T;jcl::'cja' (29)

-
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and R; are the components of the lattice-site position vectors parallel to the external
clectric field. Performing the same decoupling as in (11) and taking into account (29),
formula (28) may be written in the form

1/8
2
(@) = 2e 'f dve™ f da Z ((Ri—R )T, TR, ~R,)
ine
X '1-; —1H(t+l}.)> <cw JG 1H(1:+M)cl-l; Cm e iH(.‘t+i/"|.)>. (30)
According to [34] we have
(c;c tH(r+1/l)c+ c e—iﬁ(t+il)>

et 2eV0 4t
= 506’6j15im - 4(1+eU/0)

(31y
with ¢ = iU(t+iA) and the chemical potential for the half-filled band u = % (cf. [40, 41]).
To calculate the first average in (30) we make the simplest approximatio?

(R —RYT @™ (R, = RYTye My n aX(T»? = a*T, (32)
where T is given by formula (16). According to (21) and (25) we may write

Z - 2‘ (8q1 FO) (qu )

41 qZ
xexp {—% Z/; (uf—uf) ! —u§)>q°{q‘1} exp {—% Zﬁ ((ul—u?) (uf —ub)>g5qh)eas BO~RS
igs - (RO—R N
x g4z BRSO > (A2+A2+A}—Bi—B}—B)), (33)

where A; and B; (i = x, y, z) are given by (23) and (24). Thus the dc conductivity for the
Mott insulator in the presence of pseudoharmonic phonons is

2 2 U/20
aA=@—;.—a9(li/U,m(A2+A2 A2—B2—B>—BY). (34)
Simultaneously the dc conductivity obtained in [34] is
nNela’zA®  Y/?°
144V (1 +e"22 €
where z is the number of nearest neighbours. When we define
Uiz
T oy -
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the normalized o, can be written in the form

12 \
o™ = = oo(A5+ A+ A~ BL—B2—B?), 37

where we have substituted z = 6 (simple cubic lattice). In the absence of lattice vibrations

Ay=A4,=4, = < B, =B, = B, =0 and 0" = 0, as it should be. The numerical

norm

calculations of o"™"as a function of temperature were made analogously to the calcula-
tions of the temperature dependent bandwidth described in Section 4. We again assume
that the lattice can be described by the Debye model. In this way we calculate A; and B;

norm

L)

se£7
X norm
— U'Al

. S

005

Fig. 2. Dependence of of”“ and o, on reciprocal temperature

norm

(i = x,,z) and subsequently ¢>"™. The dependence of o™ on the reciprocal temperature
compared to o, is given in Fig. 2. We see that the maxima of ¢3°"™ and g, occur at the same
temperature but ¢,”"" exceeds o, at all temperatures. The maxima of ¢3>™ and o, are
shifted to higher temperatures with increasing U. The obtained result shown in Fig. 2

qualitatively agrees with the result of paper [5].

6. Conclusions

Assuming the Hubbard approximation [11] for the electron Green function we have
investigated the influence of anharmonism in the pseudoharmonic approximation on the
electron properties of the nondegenerated s-band. It leads to the conclusions that in order
to obtain the insulating phase at low temperatures and the metallic phase at higher
temperatures in the frame of the Hubbard model for a half-filled band with a bandwidth
4 depending on temperature and constant U (there is no reason to keep U temperature
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dependent) 4 should be-an increasing function of temperature between 0K and T,.
Above T, the bandwidth 4 should be a constant and further, should decrease with temper-
ature (as described by the anharmonism). We now see that besides the anharmonism
there must exist some other mechanism responsible for such a behaviour of 4 with temper-
ature. But up to now this mechanism.is not known.

The author is very much indebted to K. Zajaczkowski, M. Sc., for the numerical
calculations, to Prof. A. Pawlikowski and Prof. O. Krisement for valuable discussions,
and to Dr H. G. Bohn for the critical reading of the manuscript.
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