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THERMODYNAMICAL PROPERTIES OF UNIAXIAL
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The classical, phenomenological spin waves theory has been applied to uniaxial ferro-
magnets with a flat-parallel domain structure. Dispersion laws and normalized wave functions
have been derived. By quantization of the results obtained the dependences of magnetization
density, energy density and specific heat on temperature have been found. -Analytic expres-
sions for these dependences are presented.

1. Introduction

The aim of this paper is to determine the influence of the presence of domain structure
in ferromagnetic materials on the spin waves energy spectrum and thermodynamical
properties of ferromagnets. Classical spin waves formalism has been recently employed
in a number of papers dealing both with bulk materials [6, 10, 14], and thin films
[1,2, 10, 11]. As compared with the approximate second quantization method [5, 8, 9,
12, 13], the classical formahsm permits one to deéfine prec1se1y the' boundary condmon
imposed on the equation of motion (e.g. for thin films). In the present paper an un1ax1a1
ferromagnet with flat-parallel domain structure is considered. The following types of
energies are taken into account: exchange energy, energy of - anisotropy, wall quasi-
elastic energy and energy of demagnetization. It has been assumed that the sample’s
magnetlc energy canbe expressed by a magnetization dens1ty vector and spatlal derlvatlves
The set of Euler-Lagrange equations determines the energy minimum conditions. The
periodicity conditions, defining the domain structure, are imposed on the solutions of
the Euler-Lagrange equations. In the ground state the magnetization density vector is
parallel to the direction of the local effective field. Precession of this vector about that
direction is described: by a classical . Landau-Lifshitz equation of motion, without the
damping term. The equations of motion have been solved in a local coordinate system (x;,),
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where the xj3 axis coincides with the direction of local effective field. Dispersion laws and
a normalized wave function have been derived. To obtain mean thermodynamical values
for the magnetization density vector, energy density and specific heat, the classical results
have been quantized. The finite size of the sample has been taken into account by
adopting a boundary condition of the Born—Karman type. Calculations have been carried
out in the linearized equations of motion approximation.

2. Equatwn of motzon

In analogy to [1, 5, 6] we assume that the magnetlc energy F of a ferromagnet has
the form

F = i[f{Mw- Mo,,,,}d?c, €))
where f{...} is the energy density, M, = M,(X) is the magnetization density vector,
M,, = 8M,/0x,. For uniaxial ferromagnets the energy density is )

fiM, M} = =5K M2+2CM M, +27rM2+ K(y3M2 y2M3) 2

where K, is the amsotropy constant, C,, — macroscopic: couphng constants, ‘K’ — coeffi-
cient of quasi-elastic force of the 1nterdoma1n wall [9,12]. Summation over repeating
indices is understood. The necessary condition for a minimum of the function (1) with
the additional condition

M(OM,X) = M; ©)
is the set of Euler-Lagrange eqﬁations of the fornl ’
. OoF ok :

H = — — =M, = Ay, M,, , 4

a1 5 M =AY, 0 . N . ( )

a

where 4 = A(X); MGA ja Ma(f) = y,M,. The unit vector 7y, =. ya()?)“ is directed along the
local magnetization vector M,(%). In the case of flat-parallel domain structure of the
Shirobokov type [3,4] we have

Yo = ;Ya(xl); ~‘ya(x1 +2nA) = ’Yoz(xl) n=0,+1, iz, ooy (5)

where A is the domain width. The solution (5) for the structure of this type has been ex-
tensively discussed in [3, 4], and are of the form

P1(x) = 0;-  p,(xq) = sin p(xy) = Acn (gx1);
7a(x:) = cos p(x) = sn (@x1)s . ©)

where sn(gix,), cn(gx,) are Jacobi elliptic sine and cosine,'respectively of the argument
gx,. In (6) the angle between the magnetization density vector and magnetically preferred
axis of the crystal (the Ox; axis) has been denoted by @. Moreover

¢ = K VEC (7
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where k is the elliptic integral modulus, defined by the relation
y, I
K(K) = —~K,/Cy 5 ®)
2k
where K(k) is the full elliptic integral of the first kind.

To describe the precession movement performed by the vector M, around the
equilibrium position, defined by solutions (6) of Eq. (4), let us introduce the notation

Mu(xs‘t) = ya(xl)M0+ma(5C-a t) (9)
with
Yo, = 0. (109)
The equation of motion has the form
om, .
~ = ggo:ﬂQMﬁHgff, (11)
where &,;, —is the Levi-Civita antisymmetric tensor, g-— giromagnetic ratio. In the

first approximation of the Taylor series [6], the effective field can be expressed as following

il il
- . mg +
aM‘xaMﬁ My =yoMo N

H;ff = iyaMo .mp’uv. (12)

. OM,,0My, |r, o =yeoMo
Let us rewrite vector m,(X, ) in the form
my(X, 1) = [ do | dem, exp {i(wt—xg)}, 13)
where
My = my(xa3 %, @) K = (0, ks ks & = (0,x5, %3). (14)

Because of the condition (10) components of the vector m, are no longer linearly in-
dependent. To eliminate one of them from the set of equations (11) let us transform to
a local coordinate system (x%, x5, x3), where the Ox} axis is parallel to the unit vector
7.(x1). In the local coordinate system the vector m, is defined in the following way

10 0
ﬁ,;= Taﬁr;lﬁ; T, =|0sn(gxy) —cn(gxy)]|. (15)
0 cn(gx;) sn(gxy)

Introducing (6), (12), (13) into (11) and carrying out the transformation (15) we obtain
two equations differing only by a multiplicative constant [6, 9], i.e.,

my = 8:8(0);  mj = S,g(). (16)
Each of these equations has the form of the Lame equation

dZ

28 ok sn?y+dgle =0, 7

dy?
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where
2p—1 2 S,
AO = k K1 (C_LK +4TC)_1+IQ‘§‘ 0
1
or
2p—1 2 , 2 .51
Ay = kK°K; (C,x"+K')—k —zQS— N (18)
2

and

y=gx; = kT'VEKJCi x; Q= KwjgMK;; C,x* = Ck2+Cak3. (19)

3. Solutions of the equations of motion

Solution of the Lame equation (17) has the form [7]:

v
9 {E( (Yi.h)}

g

where 9,(2), 94(2) are the Jacobi theta functions. The zeta function is defined by

g(y) = exp {+yZ(y}, i (20)

E .
Z(y,) = E(y)— E Vi1, 21)

where K, E are full elliptic integrals of the first and second kind, resp., E(y,) is not a full
elliptic integral of the second kind. The parameter y, is related to the parameter A, by
Eq. (17) from which one obtains

Ay = —1—k*cn?y, (22)
and can be expressed as '
Y1 = u+iv. - (23
Let us introduce a function ¢(x,, k,) normalized in the (L, Ls, L;) region and defined
in the following way
+g(x ==
k) = e i @

where g(x,, k,) is the solution (20) of Eq. (17), Z = L,L3 and L; are the edges of the parallele-
piped along the Ox,(i = 1, 2, 3) axis, L, = 2NA. The solutions (20) of Eq. (17) are single-
-valued and bounded functions if:

(A) the real part of the parameter y,, is an even multiplicity of a complete elliptic integral
of the first kind, i.e., u = 2nK. Then we have

. =1 -1
Tlf {4N —S?k(gi}ii lg+ q'zzilkz)}l/z b TR0, (242)
q —LETq ‘1

wA(xb ku) =
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Assuming that the modulus k is near I, k~ 1, which is fulfilled for cases of physical
interest [3,4], the precession frequency w = w* is given for Ck,k,> K,+4n, K, +K’
by the formula

K'+4n
o™ = gM, (Kl-i— :

) +gMCk,k, = wh+ a)A(ku). (25a)

Frequency o} corresponds to uniform -precession, and w?®(k,) is the frequency for
nonuniform precession, i.e., the spin waves frequency.
(B) The real part of the parameter y, is an odd multiplicity of K, i.e., u = (2r+ 1)K, then
the respective quantities are given by the expressions

1 cn (gx,) cn (v, ko) +idn(gx,) sn (v, ky)

7 NG Tk HE—KEK) on (o, ko) + B (o, kpyfy 72 P 178 (40)

wB(xl’ Ea U) =

and, for Cx2 > 4, K’
K'+4rx

o® = gM, +8MoCr ik, = wy+o (x,). (25by

The following notation has been introduced in (24b), k2 = 1—k2 and the parameter v

takes values from the interval [0, 2Nz]. We can see from the Eq. (24b) that for case (B)

the solution of the equations of motion does not have the character of a spin wave.
We impose now the following condition on the constants S; and S, [2]

IS112+15,1> = §% (26)

From the set of equations (18) and condition (26) we get

D, . Q
S2 = —15 Sl = ‘—lD_Z‘Sz (27)‘
S S S T (28)
1 = — ; 2 = —1 . 7
Ve D, V@ 4+ p,|?

The following notation has been adopted in Egs. (26), (27)
D, = Ag—Kk’K{{(C k*+4m)+1; D, = Aosz[Kfl(C'ix2+K’)~i];
Q =+D,D,. (29)
When k*x 1, k% 0, C x* > 4n, K’ we get from (27) and (29) ‘
S, = —iS, A‘ (30)

which means that in this case the precession is circular.



524

4. Magnons

To the spin waves we ascribe magnons whose energy and momentum are connected
in the following way with the spin waves frequency and wave vector

e = hw; p,=hk, 31

where h is Planck constant divided by 2r. Magnons with zero momentum correspond
to a uniform precession. Taking into account the Born=Karman [2] boundary condition
we get

k,= —mn,; ‘a=123; n,=0,12,.. : (32)
For circular precession, and that is the case we are dealing with,.the number of magnons

n(k,) with momentum %k, can be found from [2]

 1:12 418,12

_ 412
ddgh = P (). (33)

lp(x )l

Taking into account that every magnon diminished the component M3, along the local
magnetization direction, by gh [2], we get

M5 = My—ngh. (34)
As magnons obey the Bose-Einstein statistics we get for the partition function
n(k,) = {exp [Be(k,)]—1}7", (35)

where f = 1/kgT, kg is the Boltzmann constant, 7— temperature. Mean value of the
magnetization along the local magnetization direction can be expressed, according to
(33)—(35) as '

MY(T, x1) = <Mixp)> = Mo—gh °j° () PGk k), (36)

where G(k,) = V/(2n)® is the density of states in k,-space, n(k,) — average number of
magnons with momentum k,, as given by the distribution (35),7 — volume of the sample.
Mean value of the energy density is given by

CE(xy)> = § lwa(e0) PGk ynlk, )b (k,)dk,
+§ 1pa(x )1 2G e, In(ie,)e (e, )dxc,, (37

where the density of states G(x,) is equal to

G(x,) = (39)

e
@n)?
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5. Dependence of the magnetization density, energy density and specific heat on
. temperature '

If the modulus of the elliptic integral is near unity, Xk ~ 1 and k, = 0, then denoting
g-! = & we get in case (A) that the square of the wave function ya(x;;k,) modulus
given by (24a) will have the form

" o Lf o en®(gw) g
RERTAIE v {1— m} (39)
and for case (B)
2%
1 _.2 _ on” (gxy)
, = 40
lye(xy, ©) 5z (40)
In the middle of a domain, i. e., for x; = (n+3)4 we get
lwAlczlom = W)Bliom = 0. (41)
vV
Whereas in the middle of a wall, i. e., for x;, = n4
||2—1’{1 Ll Iophoan = 42
WA‘wall N l 1+52kf > YBlwal = 5T (42)
Magnetization density is given by
(MY(x1))y = Mo{1—AMg—cn® (qx,) [AM*+4M"]}, 43)
where
gh (1 V 1
AMS = =— | = - dk,, 44
°7 M, !V @n)® exp {BeP(k)}—1 " “4
gh 1 V 1
AMA = — — | - - : dk,, 4
M, jV(1+62kf) (2m)* exp {Be*(k)}—1 " 3)
) (4]
AM® = gh 1 2 1 i 3
M, | 6% (2n)* exp {Be(x,)} -1 e (46)

0

In the middle of a domain the magnetization density depends only on the A-type excita-
tions having energy

K'+4n |
EA(ku) = ghMo <K1+ _T—> +thVIO(:kuk,lU

<M,3>dom = MO{l_AMg . (47)
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Because 4 SN
ka*T(3/2)((3/2)

A
AMO 4n2C3/2M5/2( h)1/2

T3/2 = RdomT3/2 (48)

then
<M3>dm = Mo{l RdomT?“}- (49)

The temperature dependence in the mlddle of a domain agrees with the Bloch 3/2 law.
In the middle of a wail we have

M5y = Mo{1—AMG§—AM* — AMP}. (50
Excitations of the B-type with energies
K +4
(k) = ghM, rc +ghM,Cr,x,
give the following relation
I .TI'kT RE, T In 2L (51)
= e— n wa i
dnsM3C hwo T hel
Whereas the term AM* coming from the A- type ex01tat10ns in a Wall has the form
= " ghn?® | 2
AIMA = — — [1—&(/j2B/5), 52
2n)8ap6 E ; L1 —@(/jxB/5) o (\)

where @ is a probability integral with the asymptotic'represe,ntatio'n [15]

_ DTk
RLE Z( )k+f,2+ 2 R,,, (53)
R,| < 1‘(::;;& = [xje?; ¢ <n’. (54

|x] cos @

Expanding AM* for high temperatures, i. e., for fes ~ 0 we get

AM* = B}, T — B3, T°7 + BS,, T2, (55)
where
. ; K +4
(gh)ti2r=32 (Al L “)k 229
B1/2 i 26(M0C)3/2 s
N (gh)-—I/Z —3/2k3/229
By = - 26M5/2C3/2 >
By~ 3/2 _3/2k5/2523 1
A (56)

2'MPCE



Eventually for the middle of a wall we have

(M5 g = Mo{l— B’?/'le/-2 —R3,uT—(Rlom—B3,)T*?—BS,,T°"%}.

The energy density is givén‘ by
. <E(lx1)>¢? CE®YA +en? (gx;) {KEY* +<EY®},
where

0

1 vV 1

ONA __ — A )

8= J V (2n)° exp {Bet(k,)}—1 e(kdk,,

o
A w_l_ v 1 1 R

= J V Gay 1457 exp (kg —1° CW %
1]
CE)* = fi _2_2 = Bl — %k, )dx,
0 (2m)* exp {fe (x,)} —
e
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(7

(58)

(59)

(60)

(61)

In the middle of a domain, energy density depends only on the A-type excitations and for

high temperatures, i. e., feo — 0 we get

2SI

’ — ONA IO\
<E>dnm - <E > (27‘[)2(ghM0C)3/2 T

The specific heat in this approximation is

G SKS2TGIEG2)
Cdom = <E>dom = 5 2 3 \3/2 .
oT 2n) (ghMOC)
For the middle of a wall
CEYan = <EX* + B+ {E)oa.
.Again for high temperatures feg — O the energy (E>B, is .

, KerQyc2)
B PBUAASE) g
{EDwan = 4ndghM,C T

-and - the specific heat due to this type of excitations

Kr)2)

Bl (B2, =
v AT N Y T onsghMC.

(62)

(63)

(64

(65)

(66)
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The energy <E)2., is

S b m ky®
<E>$all == —6—‘?7?2 e Jpeot {\/_a‘ ﬁa/—i T3/2

Jj=1
OZkkk+5/2F(k+1/2)
Z( 1) k+5/2 T uk+5/2 k+3/2 k+5/2} (67)

whereas the specific heat

k3/2 hd _
cwall = < >Wal] - 37323/ y j_3/ze"lﬁﬁoA
6473/25%03/? |
Jj=1
A <] n—1
Jéo -1/2 | 3 1/2 1 % —ifeoh
x{—T =T == -1 iBeo
( kg ik 64n (=1)e
j=1 k=0
62kkk+5/2F(k+3 2y .
X - J“W"’”/){]k: Tk+1/2+(k+_g_)Tk+3/2}. (68)

The term <E°>A is defined by (59), (62) and the specific heat due to that- term is

R 5ka*T(5/2)¢(512) , 32
Cwall = 7 <E wall = Cgom = EzéhMOC)?’T =, (69)

The quantities o, &5, eg appearing in Eqs (52)—(68) are defined by
o = ghM,C; &b = ghMy[K;++ (K'+4m)];

K'+4rn
o

e = ghM,

6. Discussion of the results

Expressions for wave functions and depen&ence of the spin wave frequencies on the
wave vector have been obtained. These expressions coincide with the respective ones
derived by the approximation of second quantization method [9, 12, 13] in the lowest
approximation of the Holstein-Primakoff transformation. Average thermodynamical values
for magnetization density, energy density and specific heat have been found. All these
quantities are local in the sense that they are functions of x; (see (43), (58)). For the
middle of a domain we have obtained

MO—<M3>dom g T3/2.; <E>dom el TS/Z; Cdom ™~ T3/2.
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These results are in perfect agreement with those obtained in [12, 13]. Dependence of the
average thermodynamical quantities on temperature is of a more complex nature for the
middle of a Bloch wall. We have not assumed, as has been done in [12, 13], that for the
A-type excitations k; = 0. For high temperatures, i. e., for kT » hof, hol in the
expression describing the dependence of the magnetization density on temperature, apart
from terms proportional to T and T3/* (as in [12, 13]), also terms proportional to T 12
and T°/% appeared.

The dependence of {(E),.; and ¢,,; on temperature is of a more complicated and
general nature than in [12, 13}
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