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A theory describing the nonlinear current density in semiconductors is proposed.
The calculations are carried out starting from the Boltzmann transport equation with the
relaxation time approximation expanded to include both a momentum relaxation time 7
and energy relaxation time 7,. The current density is derived for a strongly degenerate electron
gas, with the energy dependence of the momentum relaxation time, and for a nondegenerate
electron gas, with the momentum relaxation time assumed a constant phenomenological
parameter.

1. Boltzmann equatzon

A review of high-field d. c. conduct1v1ty and other hlgh field effects in semiconductors
may be found in Refs [1, 2]. '

The earlier elementary phenomenological theories have not involved analytic Bolz-
mann solutions. A great deal of theoretical work has been done on the solution of the
Boltzmann equation which is approximated by a Maxwell-Bolzmann distribution function
with an electron temperature 7, higher than the lattice temperature 7, but this is by no
means generally the case. Many authors use the diffusion approximation even for higher
fields, but £, has also to be determined by the Boltzmann equation. It is usually difficult
to solve the Boltzmann equation for cases of practical interest, :

In the present paper the addition of a phenomenological energy relaxation term to the
Boltzmann equation provides analytical expressions for the conductivity in a hlgh d.c.
electric field.

To get an explicit form for the hot electron distribution function, we have had to use
the standard relaxation time approximation expanded to include both a momentum 7,
and energy 7, relaxation time.

The energy relaxation time 7, may be introduced as some measure of the time for
the excited electronic system to come into thermal equilibrium with the lattice [4, 5].
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The application of a large electric field to semiconductors can produce symmetric
and antisymmetric changes in the electron distribution function f [3]

f=fotSstSa @

where f, is the equilibrium distribution function, fg is the change in the symmetric part
of the distributions function J’S(—E) = fy(k) and fa is the antisymmetric change in the
distribution function fy(—k) = — fA(E), k is the wave vector of the carriers.

In the absence of a temperature gradient and in the case of a homogeneous electric
field E the Boltzmann equation can be written [4]
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If the applied electric field is d. c. ¢f/ot = 0. The symmetric and antisymmetric
parts of Eq. (2) can be identified and we can obtain two equations.

Now we shall expand the function f, and f; in a power series with respect to the
electric field E. This gives

q - dfo q A
R 3
v E T TR ™ ®)
L dfem D ()
AN [/ AU - ) @
h dk T,

where n and (n— 1) refer to the iteration order. The initial conditions are /i = 0, f{? = 0.
In a linear approximation we obtain f{" = 0 and

fAD = —qEvt,—. )

It is seen from Eqs (5), (15) that in a linear approximation Ohm’s law is satisfied.

In further calculations it is necessary to make assumption regarding the shape of the
encrgy bands and the momentum relaxation time t,,. We assume that the energy bands
are parabolic and the energy surfaces are spherically symmetric. The momentum relaxa-
tion time in this case is expressed in the following form [6]

1,(6) = Tp8"?, Ty = const. 6)

The index r describes the type of the scattering mechanism.
The velocity of an electron for simple bands can be expressed in the form

V= — N (7)
where m* is the momentum effective mass at k = 0. For a nonparabolic band the mo-

mentum effective mass is a function of energy.
Now we calculate the electric current density in the third order approximation.
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Putting n = 3 in ‘Eq. (3) we obtain

q - dfy q = A
—E—= —E—F=-"— 8
nede YR AR = ®
and putting n = 2 in Eq. (4) we have
L df (2)
LS e ©)
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Using the tensor notation one can calculate the terms £{® and f{®
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The detailed calculations of the current density associated with the deviation from
Ohm’s law shall be given in this paper for the two limiting cases:.a strongly degenerate
and a nondegenerate electron gas.

2. Strongly degenerate electron gas

For a strongly degenerate electron gas we set f, = 1/2 in the calculations. In such
a case we find

de(Z) _ hZ dTm dfo
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where f, is the Fermi-Dirac function, %, is Boltzmann’s constant.
Electric current density in the th rd order approximation is given by

= g [ 10k (15)
e (27'5)3 e



514

‘where -
dsk = k2dkdQ. (16)

Substituting Eqs (11), (12) into Eq. (15) we obtain :

2g* h? &,
5 =20 g (- 22 cuktakx I
2n)° m**, “de

2¢* h? dfp\ d
+ tEE4E, j( °> T 2 Ktk x 305,

Qn)® m** © " de de
+ (Z;’ :;:4 1,E,E,E, J(— f%) Tm [d—:gzi‘ + i:‘]“, ‘Z:;’] KSdkx I, an
where
I, = szlj" dQ = % nd,, (18)
L= j ks k}’ik e 40 = 5 7[BpBr0+ OuOpet 0udpy - (19)

Integrating over the solid angle  we have
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In the case of the strongly degenerate electron gas the derivative of the distribution
function f, can be replaced by the delta function (— fo) = 5(3—5) and we obtain
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Substituting Eq. (6) in Eq. (21) the current density is obtained in the form
2 2 i
q 1 3 24 Tlm 2
— — E k -3 — ——¢E°
e = I e [1 m* kgT ¢
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The momentum relaxation time 7,, corresponding to the energy of the Fermi level & is
equal to 7,(§) = Tnr &2, The current density Eq (22) in the third order approximation
associated with the energy dependence of the momentum relaxation time 7,(¢) depends
“on the scattering mechanism through the index r. It is seen that Eq. (22) depends on the
statistics and is satisfied dependently of the degree of degeneracy of the electron gas.
Let us make the assumption that the momentum relaxation time is independent of
energy, i. €. 7,,0 = const for r = 0. The electric conductivity in this case is described by

2
94 Tmo q TeTmo -
E) = 1-3 = E*|, 2
o(8) = —= n[ b Gy ] 23)

where the carrier concentration »n for a degenerate gas is equal to
Q) (24)
T 3P ’
Making use of the above equation we can describe the Fermi level ¢ for the simple band

structure as follows

_ MGy (25)

2m*
Substituting into Eq. (23) the expression for & Eq. (25) we find

q*® h*(3n*n)*3

9Tmo |
WE) = m*" [1~T3-(,——; ey rgrmoEz——lj. (26)

m=

It is seen that Eq. (26) determines the energy relaxation time 7,(E) dependent on the electric
field for E # 0.

3. Nondegenerate electron gas
In the case of a nondegenerate electron gas the distribution function f; can be descriebed
by the Boltzmann function

fo = &aTeT R, @7)

where & is the Fermi level. By neglecting the effect of the energy dependence of the
‘momentum relaxation time, the current density for 7., = const and simple band can be
calculated.

According to Eq. (10) we have
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where

du, h

C e 5.
dky — m* (29)

Substituting Eq. (28) into Eq. (11) we obtain

df, q3 dfo
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Now we are able to calculate the electric current density in the third order approximation.
This current is given by Eq. (15).

Substituting into Eq. (15) the expression for 73 Eq. (30) and integrating over the
solid angle Q we find
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It is seen from Eq. (31) that the general expression of the conductivity tensor in linear
approximation is given by

q hZ ‘ dfo 4
= — U —- kdk, 2
g 37 = m? J( d ) d (2)

&

where p1g = qT,.0/m* is the mobility of electrons. The carrier concentration can be gi\}en by

1 a2 (¢ dfy
=— — k*dk. 33
: 3n? m* J\ da) (33
For the nondegenerate electron system we have koT> £ and fp < 1. Making use of
the last inequality the following expression for the conductivity can be found

2 4 .
g hY Tghets , 1 dfo 6 ]
E) = - — — —=5E°"— |2 k°dk 34
o(E) quon[ 512 m*> (koT)* n f ,.f°< de (34

d 1 [2m*\"?
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0

where
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According to Eq. (33) the carrier concentration of electrons in the nondegenerate case

is given by
JE (2m*ke TN L0
n= 22\ gtl*oT, (36)

Making use of the expression for e**T from Eq. (36) we obtain

3/2 233
3722 q*h3nt 1, ;l

s (37
am*S2 (e, T 37)

H(E) = po [1—
To analyse the effect associated with 7,,(¢) it is necessary to take into account 7, = 7., €2,
where the index r describes the kind of scattering mechanism.

In many-valley semiconductors the conduction band minima may be approximated
by ellipsoids. The band of ellipsoidal structure depends on the effective mass tensor and
therefore on the carrier mobility. The mobility anisotropy is further affected through an
anisotropy in the momentum relaxation time [5].
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