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Thermoelastic stresses belong to the most important factors determining the quality
of a single crystal grown by the Czochralski method. In the paper, the distribution of the
stress components Oy, Opg, 0z; and o, is determined from the potential of the thermo-
elastic strains for semi-transparent single crystals. The orthotropic case is considered. It
has been assumed that the mechanical properties of single crystals do not depend on tempera-
ture. The form of the potential of thermoelastic stresses does not take into account convection
of the protective atmosphere in the course of crystal growth by Czochralski’s method.

1. Generation of stresses in the pulling processes and their contribution to the quality of
a monocrystal

In the process of crystallization one has to create those thermodynamic conditions
which prefer the formation of the solid phase (crystal) over the liquid one. In Czochralski’s
method this is reduced to determining a fixed temperature gradient at the front of crystalli-
zation and in the crystal. This means that the crystal cannot be in a uniform thermal
field. So the different parts of the solid phase may be subjected to different states of stresses,
the so-called thermoelastic stresses, caused by the nonuniform extension of the material
due to the influence of temperature. Because of great differences in temperature thls lS
the most serious factor deteriorating the structural quality of a crystal. M

Thermoelastic stresses are the factors generating other defects in crystals, such as’
dislocations grain boundaries etc. Let us consider, for example, the formation of dislo-
cations due to radial and axial temperature gradients (Fig. 1) [1]. Due to these diﬁ'e;jences
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the distances between planes are distorted: “stretching” occurs in the crystal’s cooler
parts; thus there appears an cumulation of energy in these thermoelastic stresses which
is diminished by the formation of dislocations.
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Fig. 1. Formation of dislocations in a crystal due to radial A and axial B temperature gradients, a — defor-
mation of crystaflographic planes due to a temperature gradient, b — unannealed crystal, ¢-— partly
annealed crystal, 1 — solid phase

In this way the configurative energy of the solid phase increases but the total value
of the free energy is reduced by the elastic energy released in this process. Billing [2] has
calculated approximately the density of dislocations created in this way from consider-
ations of a purely geometric character. Let e.g: the temperature in the external zone of
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a crystal be equal T; and in the zone directly under it T,, with T, > T,. Zone 2 forces
zone 1 to have a perimeter of 2nr,(r, = r,(T,)) in length instead of the already existing
2nry(ry = ri(T})). This is equivalent to applying a force causing a fixed deformation.
In order to diminish the elastic energy we have to introduce dislocations by:

n = 2nrAT(a/b). 4))

This gives e.g. for some oxide crystals the following dislocation densities per unit
of perimeter length:

a—ALO; 0.5x10%4T
Y AL;O,, 0.4x1024T
Cawo, 1.6 x10%24T
LiNbO, 1.9x1024T

(in the calculations it has been assumed that r = 1 cm).

The problem of distribution of stresses in a limited cylinder (this shape will be used
to approximate a growing crystal) has not yet been solved exactly. The earlier works
are limited to isotropic elastic media and to boundary cases, i.e. to the disc for which the
length is assumed far smaller than the radius (4 < R) [3,4], or to the infinite cylinder
(A > R) [4, 5]. Exact solutions for the case of an isotropic finite cylinder were given by
Sundara Raja Iyengar and Chandrashekhara [6].

They assumed a symmetrical and an asymmetrical axial distribution of temperature;
at the side surface of a cylinder 7(R, z) = 0 was assumed. For the orthotropic case some
simpler problems were elaborated: infinite space, semispace, elastic zone [7]. Sharma
based his development [8] on the potential of thermoelastic deformations. Mossakowska
and Nowicki [7] treated the problem more generally: besides the specific solution they
gave the methodology for a general solution. They assumed that the thermal field
is stationary and, moreover, that it does not influence the thermal and mechanical properties
of a solid.

2. Simplifying assumptions

The complete and exact solution of the problem of thermoelastic stresses consists
of a sum of two solutions: specific and general. The first is obtained from the potential
of thermoelastic strains . This potential should fulfil the following equation

Ay = T(r, z). )

The stresses in an isotropic medium in cylindrical coordinates may be obtained from

the formulae "
10 0* o* y\
= ‘—2G<— I "’); ol = —-2G< L ’”)

r or 07> or? 0z*

Py 16 92 |
o, = —26(—w+—i); o, =262 3).
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The general solutions for the stresses may- be obtained by means of Love’s functlons
for stresses with-the help of formulae:

e ar? 62 or
; a 2 i ; 2
A ——[(2 Dap= f], ol = a((l—vw— M) @

The Love function should be\ cho,se_d 50 as to satisfy the equation

sp=0., )

In the present paper, in order to simplify ‘calculations, the following was assumed:

~a. 'the medium:is orthotropic, i.e. its-properties in the direction of pulling differ from
the properties in the: dlrectlon perpendicular to the- one mentioned above (case of-cross
isotropy); T 1%
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Fig. 2. Set of coordinates used for calculating the distribution of thermoelastic stresses in a single crystal

b the calculatlons are carrled out in cylmdrlcal coordlnates, as ‘shown in Fig. 2.
In Fig. 3 the definitions of individual stress components are given in both carthesian and
cylindrical coordinates; ‘

c. the crystal has a’ cyhndrlcal shape with the generatmg line parallel to the direction
of elongation. The axis_of anisotropy of the crystal is in line with the generating line of
the cylinder; pE
" d. the mechanical propertles of the material are- independent of temperature;
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e. the problem can be considered quasistationary, i.e. the process of redistribution
of stresses does not depend significantly on the velocity of crystal growth; -

f. the problem is characterized by an azimuthal symmetry, which means that the
stress components do not depend on the angle ¢.
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Fig. 3. Definitions of components of thermoelastic stresses: a — in carthesian coordinates, b — in cylindrical
coordinates

3. Potential of thermoelastic deformations

The solution of the problem of thermoelastic stresses in single crystals is based only
on the potential of thermoelastic stresse (specific solution) which is assumed to be of the

form
p = Z B, J, (% r) sh (:/ﬁ?"_ z) . 6

n=1

If the temperature distribution in a single crystal is [9]

a “sh (ﬂ- )
T(r. 2) = T.. Ba. Vi
(r,2) = To+H(T,—To) AJo ﬁ Ll e——=s
n=1 ’

(M
( ﬁ" )
sh ——Zp
Ky
KK, An ’Tt - TO

R Y R NI
sn (\/—“K_z ZO)

then v fulfils condition (2) if
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* Now, according to Mossakowska and Nowacki [7], we determine the stresses according
to the relations given by the authors mentioned above.

5 P\ g0 o S B N
Oy = YC33C4a [E (bA,+e ﬁ) s (A +c(7 )] v+ z K, sh (7K; z) )

n=

2 2 2 a2 2
Opp = yc33c44 I:a(') (bA +e : )—- ;’ (A +cao )] P+ ZL Sh(\/x ) (10)
l: (bA +e ):Iw+ ZM JO( e r) | 11
2
Opy = “V6'33044[ <b +e——>:| ¥+ Z N.Jy (\/K ) (12)

n=1

Ozz = YC33C44

‘where
(ar + “ZVZ)EI'EZ

- £y 13
(l_vr)Ez_zv:Er ( )
. 2onc (1 v)E,o, ¢q3 (14)
,.(0( —a vz) Ca3
e = _c_3_3_ i _2szrar_(1_vr)Ezaz (1+ 6_13_) (15)
Caa E,.(OC,. - (szz) Caa
2, E,,—(1=v)E0,
b = 2 - vz r.ar ( vr) zaz (16)
C33 IL,.(OC,. - OCZVZ)
0% 1 0
4= 4+29 17
T or + r or {17
q=25%¢. (18)
C33

We thus obtain

NI RORTYNTS
S Y ) ()

+‘ K,,sh(ﬁ" z) (19)
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.a¢¢=7033044{z B,"f: (,t.z b) (\/E r) h <JK )

n=1

SO ()
oY) .
o S Dalelf) ()

” (- a)n(E)=(E) ZNJ(j‘) >

n=

since the crystal is not subjected to external tensions, the following boundary conditions
should hold:

6,=0 and o6,,=0 for r=R

6,,=0 and o,=0 for z=z,. (23)

From the above relations the constants K,, L,, M,, N, are determined.
K, = —B,p* {%(Kﬁ - _> Jo (j,c ) t o (Ki - xi>
[ () - (&) =
L= - ﬂ“{%(f - ;)JO(\//?;,R> * zi (i - xi)

i By .
[l () g
4
M'l = P‘z@ 033644 (i . _) Sh( ﬁn_ Zo) (26)
K, K, ¥ K,
4

N" _ — E’Lﬁfz 033644 (_e_ e )ch< ﬁn_ ZO) . (27)

JEK, K, K Ky
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Expressions (19)—(22) and the constants determined by (24)—(27) form the basis
for calculation’ of thermoelastic stress distributions in single crystals of lithium niobate
and yttrium-aluminium garnet with the aid of a computer [10].
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