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Deconvolution of distributions affected by statistical errors is one of the so-called
“incorrectly posed problems™ in mathematical physics and thus requires special predictions
for the resulting functions. In this paper a modified method of statistical regularization has
been described which serves as a tool for experimental spectra processing. It enables the
deconvolution of the detector and electronic noise to obtain a final resolution significantly
improved. Examples of the application of the technique for the spectra characteristic to
nuclear physics and nuclear microanalysis have been presented.

1. Introduction

The problem of spectra distorsions caused by the finite energy resolution of the ex-
perimental system is common in all fields of expenmental physics dealing. with measure-
ments and mterpretatlons of the energy spectra The problem is furthermore comphcated
by the presence of statlstlcal ﬂuctuatlons involved in any real experiment.

In this paper we describe the method of deconvolution i.e. the mathematical procedure
which permits one to determlne the shape of the ideal energy spectrum prov1ded the resolu-
tion function of the experlmental system is well-known. The method referred to as statistical
regularization is based on the works of Phillips [1] and Turchin et al. [2, 3]. It was applied
to the analysis of the typical energy spectra obtained in the course of the investigations of
solid state structures using nuclear reactions and elastic backscattering [4, 5]. Nevertheless
it can be applied, without significant modifications, to the analysis of other klnds of experl-
ments, particularly in low energy nuclear physics. - 3

‘2. Statement of the problem

The ideal energy spectrum produced by the interaction of the incident particles with
a target is given by

Y(Ep)dE; = IQ0,[ E(x)]C(x)dx, )
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where: I — number of incident particles, Q — solid angle of detection, 0,(E) — differential
cross section at an angle of detection 6, C(x) — concentration profile i.e. number of a given
kind of atoms per cm® at the depth x.

The shape of the Y(E;) spectrum corresponds to a somewhat fictitious case of an ex-
perimental system having §-function resolution. No statistical fluctuations are taken into
account either. The resolution function of a real system is composed of several contributing
factors including: detector resolution, incident beam energy spread, energy straggling

R(E--E)Y(E)d&;

Fig. 1. Convolution of the ideal spectrum Y(E) with the resolution function R(E¢—E)

of particles, interaction kinematics, geometry of the experiment etc. [6]. The real spectrum
F(E;) is formed as shown in Fig. 1. Each monoenergetic component of the ideal spectrum
Y(E)dE is distributed after detection according to the shape of the resolution function
R(E). As a consequence of this fact the number of particles at a given energy E; is equal
to R(E;—E)Y(E;)dE. The other monoenergetic components of the ideal spectrum will
have similar distributions hence the intensity of the spectrum at the energy E; is given by

F(Ep) = _? R(E;—E)Y(E)dE 2

i.e. by the convolution of the ideal spectrum and the resolution function. As the energy
spectra are usually obtained by the use of a multichannel pulse height analyzer which
accumulates information in the finite energy intervals (channels) the integral in Eq. (2)
should be transformed into a set of linear algebraic equations

P

) Ry =fj (G=1,2..n €))

13

n being the number of channels. This can be written for simplicity in the operator form

A —

Ry =7J. @
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The first approach to the problem of deconvolution is to solve Eq. (4) by the calculation
of inverse matrix R-1. However, as was shown in Refs. [1, 7], the direct solution

y=R7f ®)
is either impossible or does not give a unique result if the real spectrum contains statistical
fluctuations. In most cases direct solutions have large oscillating components leading to
unphysical results. In fact an additional term, which has been overlooked in Eq. (4), should
be taken into account, namely the vector g describing the counting statistics in each of
the channels

‘_21 Ryyito; = fj. ©

The only way of solving the problem is to introduce some a priori constraints to the un-
known function Y(E) or, in the algebraized version, on the vector y. These constraints
should represent the knowledge or anticipation the experimentalist has had before he
started the experiment. It may be based on the results of a previous experiment or even
on the basic physical features of the investigated phenomenon. We would like to stress
that without introducing some information a priori the solution of the problem is impossible,

Several authors approached the problem of deconvolution using the method of the
Fourier transform [8]. The a priori information is introduced as an arbitrarily chosen
high-frequency cut-off which in most cases has no physical meaning. Another way to
introduce a priori restrictions is the parametrization of the unknown function. In that
case the method of least squares is usually applied.

In this paper we present the method of statistical regularization based on the theory
extensively described in [2]. The principle underlying the method consists in the probabilistic
way of introducing a priori information. This seems to be the most appropriate way of
data processing, for which the introduction of probabilistic concepts is evident because
of the random nature of the errors involved.

3. Statistical regularization

Referring to Eq. (6) the deconvolution problem is now as follows: the unknown
quantities y; represent the state of nature, and some random process gives us the quantities ¥
How are we to find the set of Vi given f;? The general answer to this question is given by
the decision theory [9] which states that, on the average, the best estimate on the statistical
ensamble is the Bayesian estimate. To calculate the Bayesian estimate of the vector j
one should find the probability distribution P(3|f) i.e. the probability of y given f, and
then calculate the statistical average of y,

> = [7P(3If)dy. Q)
The a posteriori probability P(y|f) is given by the Bayes formula (7]
- P()P(fIy
PIF) = LRI ID ®)

§ PGHP(FI5)
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where: P(f |7) —is the conditional probability of f given 7, P(7) — the probability distri-
bution, which represents the a priori knowledge or degree of belief in the different hypo-
theses. ‘ ' '
The P(f|j) probability distribution can be deduced from the nature of the statistical
fluctuations involved in the measurements. If these fluctuations do not-appear the ideal
spectrum could be easily determined from the experimental one. Therefore the probability
distribution of obtaining the real spectrum f, assuming one knows exactly the ideal
-spectrum y and .rycsolution function R, is given by the probability distribution of vector @
(cf. Eq. (6) ,
P(f1y) = P(f—Ry) = P(@)- O]

Each component of vector g is therefore given by

0= G—RP; == % Rase (10)

Assuming that fluctuations in the number of counts in a particular channel are normally
distributed about the mean value (Ry); with dispersion s; one has

2 A
P(o;) = (2ms2)~ exp(— 2";2) (11)

J /.

‘Since statistical fluctuations in different channels are independent, the probability distri-
‘bution of vector g is given by the product of distributions of all components

n ] n ) »
=:[_J:(27rs12-)_”2 exp[— —T(fj— ERjiyi> ] (12)
. 255

i=

This expression can be considerably simplified by introducing the following new matrices

W wher W>-—1—5 5y = ! ";'j
: wnere ”_SJZ ij‘a- ij = 0 l#]
and ‘

B a R*WR, R+ being the transposed matrix.
As is shown.in Appendix A, equation (12) can be written in-the form

P(FI7) = ey exp {—% (7, BY)+ G, RT3 (7, WD} (13)
:Where (7, By) = Y. y:Bi;y; being a scalar product. Now we have reached the most critical
point of calculating the Bayesian estimate: the introduction of a priori information.
vaiously the quantity of such information should be as low as possible. If P(J) is much
‘miore informative than P(f|y), there would be no sense in performing the experiments. For
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P(y) = const we obtain an unregularized solution which is the same as the direct
solution of Eq. (11).

To determine the P(j) distribution one has to make only one assumption: y(x) is
a smooth function. After Turchin et al. [2] we take as a'measure of the degree of smoothness

d> 2
of a function the norm of the second derivative in the form f l: dy(:)] dx. After some
X

algebra is performed the integral should be substituted by a scalar product (7, fzy), where Q
is the operator of the second derivative of the vector j. Properties of the matrix Q are
discussed in Appendix B. ,

In order to take into account all possible values of  given by the a priori distribution
P(7) one should calculate the average of (¥, @7) on this distribution

§ (5 @PHPGYT = w. - (14)

Let us assume for a while that the number o is known. However, Eq. (14) is not sufficient
to define P(¥) in a unique way. In order to introduce as little arbitrariness as possible
‘we choose from all distributions P(j) satisfying Eq. (14) the one that contains the minimum
information about j. According to the information theory [10] the quantitative measure
of information is given by the functional

I[P(3)] = | P(5) In P(5)dy. (15)
As can be seen in Appendix C the final form of the P(y) distribution can be obtained by
calculating the conditional minimum of the functional (Eq. (15)) for a given value of w

Pa(J_)) =0C exp[—— g(y, Qj})] > (16)

where o = % is the smoothness parameter. We can now find from Bayes theorem the
a posteriori probability distribution P(ylj_")' by Jinserting»Eqs. (13) and (16) into Eq. (8)

P(5If) = es exp {~% (5, [B+eCp)+ (G, R W) -1 (F, WD)} )
As is shown in Appendix D, the P(y|f) distribution has a gaussian form. Hence the
regularized solution (7, being the average of the vector y for a given value of o-param-

eter can be obtained by finding the value of ¥ corresponding to the zero value of the
exponent in Eq. (17)

(o = (B+ad) R WT. ' (18)

The covariance matrix of the distribution is given by (B+oé$§)‘1. The diagonal elements
of the covariance matrix are mean square errors of the solution

o} = [(B + “Q)— 1]ii~ (19)

To complete the calculation pattern one needs a method to estimate the most probable
value of the smoothness parameter «. This can be done on the basis of the experimental
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data making once more use of Bayes theorem. The probability of getting different values
of « for a given experimental spectrum f can be calculated from

P@P(fio) -
§ P()P(flydo”
There is, however, no rcason for preferring a certain value of «, therefore we assume P(x)
= const. _
Then P(f |«) can be written as
P(fie) = | P(fI))P(F|2)dy, @1

where P(f|7) is given by Eq. (13). P(¥|x) can be deduced from the solution of Eq. (16)
for different values of a. After the distribution P(«|f) is known, one can compute the
mean value {y)

P(alf) = (20)

Gy = [ {r.Plalf)da. (22
In most cases of physical interest the distribution P(x|f) is sufficiently narrow as to replace
{a> by o, without introducing significant error. This imposes replacing of <y, by
Vana, Which is much easier to calculate. For a detailed calculation of o, see Appen-
dix E.

4. Application to the deconvolution of energy spectra with sharp steps

The method described above has been applied to a number of problems connected
with experimental data correction [2]. However, it appeared useful only for slowly varying
functions. If rapid changes are present in the spectrum the procedure yields negative
data points or oscillations which are physically meaningless solutions. Thus when dealing
with the spectra composed of both smooth and sharp parts, the smoothness postulate can-
not be fulfilled completely for the whole function. In order to resolve the problem let
us redefine the second derivative operator Q:

!
R d2 2 d2 2
Q] = I (#) dx + E B; j (d—)j) dx, (23)
1 j=1

[x4,x;+ 451
X- U1 [xjx;+451

j=

where: /— number of discontinuity points, [x;, x;+4;] — interval with rapid change.
The first component corresponds to the smooth part of the spectrum whereas the second
one covers the region where rapid changes are suspected to appear. Introducing f; param-
eters means that in the regions in question the second derivative is allowed to be 1/8; times
greater than in the smooth regions. The application of the matrix @ defined by Eq. (23)
has led to satisfactory results for correcting parameters f; of the order of 0.1—0.001.
Figure 2 shows the comparison between the spectra subjected to the deconvolution proce-
dure according to (b) unmodified and (c) modified method. Spectrum (a) presents the raw
experimental data.
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The parameters f8;,j = 1, .../ can be found from the experimental spectrum, in
a similar way as «, applying once more the Bayes formula. If the values of o and B, j # i
are fixed one obtains:

PBIPIB) o

P = T psypisyag:
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Fig. 2. Comparison of different methods of deconvolution: a) — experimental spectrum, b) — according
to Turchin et al. [2], ¢) — present work

Since there is no reason to prefer any particular f; value we assume P(B;) = const, which.
leads to

P(BI]) = ¢5 [ P(fI7)P(7)dy (25)
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where Py () is the distribution given by Eq. (16), for O = O(B). This expression can be
transformed into the final form

P(B\f) = cs exp {2 (R*WF, [B+a@] 'R W)} [det (B+aQ)] 2. (26)

Finding the distribution of the conditional probability density P(8;|f) requires one to cal-
culate, for each value of f;,, the determinant of n-dimensional matrix, where n is the
dimension of vector f. This is the way to determine the parameter B; .

After putting the f§; . value to the operator @, one finds the distribution P(8;.|f).
This has to bé continued for all indices “i”. Note that each P(8;] f) distribution depends
on the values of the remaining B; parameters, thus the procedure is to be repeated until
the required convergence is achieved. Another difficulty arises from the dependence of
the distribution P(B;|f) (Eq. (26)) on the smoothness parameter o.. Therefore one has to
include in the iteration process the determination of o, , for-any set of B; . This yields
finally an estimate of the maximum of the many-dimensional function P(8;, ... B alf)
depending on I+1 variables.

To test the method, the following step-shaped function has been taken:

“ )_{1000 1<% <24

2000 25 < x; < 50 27

where x; is a channel number. The convolution-of this function with the gaussian distri-
bution R (FWHM = 5) gives:
i(x) = jR(x—x’)ys(x’)dx’. (28)

Then we have to add the statistic errors to each bin so as to obtain the “experimental”
spectrum

50 = Fsd 5, @)
' o e

Qo
1
I

o

_ 1000 M.ae@wﬁ’;u
: [ 1

L4 2
" R

CHANNEL NUMBER —

Fig. 3. Test spectrum — O and that deconvoluted with @ = 0.16 and 1/ = 390 — @
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Such an artificial spectrum is shown in Fig, 3. The result of deconvolution differ's from the
original function y°(x) by less than 197 which is well below the statistical errors. Table I
gives the values f,,., and o, for the successive steps of determination of the distribution

P(B, alf).

TABLE 1
s ‘ .
= : A
200 0.06
240 : 0.077
270 0.1
330 0.13
390 0.16
390

Figure 4 shows two curves of the probability density P(1/). Since the distribution correspond-
ing to region I (in Fig. 4) is a broad one, the integration of ¥ over the whole distribution
ought to be made to find (7). Fortunately, it can be proved that the fp-parameter only

|

a=016

2 I L |
5 )
5, o | |
2 ‘ ‘
S
S | |
a .
01 ]— J
L = ) _ L
2w 400 600

Fig. 4. Probability distribution of the S-parameter for: I — sharp and 2 — flat part of test spectrum

weakly influences the vector j (in terms of deviation from j°), which enables one to replace
the integral <y) with y,___, . This simplifies calculations significantly. For the region 2
the distribution has a strong, narrow maximum about § = 1, as it would have to be expected
for any region which covers the “smooth” part of the spectrum.

5.: Results and discussion

The method has been applied to the deconvolution of spectra characteristic to the
nuclear microanalysis [4, 5] and therefore . containing sharp steps due to the rapid
changes of the concentratlon dlstrlbutlon of a given element in the investigated sample.
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Fig. 5. Determination of resolution function from the experimental spectra
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Fig. 6. Energy spectra of a-particles emitted in the 150(d, «)!*N reaction from 900 keV deuteron bombard
ment of a 2100 A thick SiQ, surface layer, a) — experimental, b) — after deconvolution
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Performing the procedure of deconvolution we have to assume that the resolution
distribution R is measurable. In practice this can be done by using a radioisotopic source
of monoenergetic a-particles which are registered directly by a detector. Another way to
determine the resolution function is illustrated schematically in Fig. 5. Applying a thin
and/or thick target and analyzing the spectra of backscattered or nuclear reaction-produced
particles we may obtain the R distribution or all its required momenta. Fig. 6a shows the
energy spectrum of a-particles from 1°0(d, «)'*N reaction induced by 900 keV deuteron

—— -

7L 8, = 145°

lab

—a

mb/sr

46 1d0) |

800 850 300 950

Eg , kev —

Fig. 7. Excitation function of the '0(d, @)"N reaction

bombardment of 2100 A thick SiO, surface layer. The incident deuterons energy has been
chosen as 900 keV so as to cover the flat region A1 (Fig. 7) in the excitation curve. Since the
OXygen concentration has been found to be uniform, the slope of the spectrum is due
to the variation of the reaction cross-section with the incident deuteron energy.

In order to check the sensitivity of the method, a more spectacular example of the
energy spectrum has been taken. The 6000 A thick, uniform SiO . surface layer has been
bombarded with 805 keV deuterons. The a-particles spectrum of that case is shown in
Fig. 8a. The spectrum after deconvolution (Fig. 8b) follows exactly the shape of the
excitation function in the energy range 42 (Fig. 7) with a characteristic small resonance
at 780 keV. Another example of the application of the deconvolution method is shown
in Fig. 9. It presents the backscattering energy spectrum of 1.8 MeV a-particles from
a 1950 A thick silicon dioxide surface layer. The deconvoluted spectrum (Fig. 9b) yields
the result which is free of experimental system distorsions and thus making further data
processing much more convenient.

Figure 10 shows the comparison between two spectra of the same origin but differing
with counting statistics. The purpose of this experiment was to test the influence of statistical
errors on the resulting functions j. After normalization both curves are equal to each
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other to within an accuracy of 39, which reveals weak dependence of statistical errors
on the vector y. -

As is seen from the above results, the deconvolution method makes it possible to
analyse more accurately the energy spectra. The statistical regularization has some advan-
tages over other deconvolution methods:

— it refers to the statistical properties of detection processes involved,

——

n/10°

n/10° ——=

4y, % ——w

1 1 I |

20 40 60 80
Channel number

S e e

Fig. 10. Comparison of the backscattering spectra from Ag-Au alloy obtained with different counting
statistics (a and b);.c — the relative difference between the vectors y;; dy = (31 la—yoI)y.11; I, I being
) numbers of incident particles for spectrum a and b, respectively.

v

— applies the nontrivial a priori information, the amount of which is minimized, B

— the errors in solution can be estimated, . -

— enables one, after adequate modification of matrix 2, to process spectra of any shape.
The assumption of the smoothness of the solutions seems to be reasonable in most

cases in which nuclear microanalysis is involved. It is difficult to determine exactly what
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is the uncertainty in the energy scale of the deconvoluted spectra. This uncertainty depends
on the accuracy of the resolution function estimation and on the statistical errors of the
measured spectrum. In the limiting case i.e. if the resolution function is known with absolute
accuracy and for the very small statistical errors involved in the measurement one may
expect that the fine structure of one channel width could be determined.

Numerical calculations have been performed by the use of CDC CYBER-72 computer
of Institute of Nuclear Research. The program has been divided into 10 subroutines to
make easy operations like inversion of a matrix, calculation of a determinant etc., during
the iteration process. The fol'owing input data are required: coordinates of the vector 7
initial values of o and B coefficients, parameters of R distribution, regions where f;
values will be estimated. The program, for the dimension of the vector f equal 90, occupies
the whole computer memory (64k). Time consumed depends on the number of s and
ranges between 10 min and 1 hour.

APPENDIX A
P(f|p) probability distribution

The exponent in Eq. (12) describing the conditional probability P(f |7) can be trans-
formed as follows:

n

n 1 ) o
z?(f,— ZRﬁyi> = (f —Rj, Wf—WRYy)
J
- e

j=1 i=
= (f, WP —(f, WRy)—(Ry, Wf)+(Ry, WRY)
=(7‘: A])—(f,R+W])—(j)_,R+Wj)-|—(y,jé+ jé

= (f, W -2, R*Wf)+ (5, BY).

¥)

Hence
P(FIp) = ¢y exp {—2 (7, B))+ G, R*WH -1 (f, W)} (A1)

APPENDIX B
Properties of the matrix Q

The matrix O of the quadratic form (7, Q¥) should assure the identity of the scalar
2

2
product and the integral j( 7 J;) dx. The numerical value of the second derivative
X

of the spectrum in the channel “j” is given by

u__l_ Yi=YVi-1\ _ Yi+17Vi-1
o= (5=) - (2722 @
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and
1
47y = e i1 42V541Y5-1—4V9j-1 +4y1%—4)’jy{'+ 1+ V341 (B2)

where % is the channel width which is dsually:-assumed to be equal to 1. The scalar product
(7, 27) should be therefore equal to

n n .
Z (A}’)Z = Z auytyv "(B3)
‘J‘?_l: N j=1
hence
Z a;;Yi¥; = Z yj'gijyi:
ij ij :

n

n _ o ST T I
Z A3V i— '21 yj(_Zl Qini) =0, '21 J’j(.zl ai;Vi— '21 Qiy) =0
i=1 j= i= - ji= i= i=

uM:

which leads to the equality

a,-j == ‘Qij' i : (B4)
The expansion coefficients a;; can be easily found from Eq. (B2)
Y (45 = o Ve 2= 4VYks 1 OVE = 4Vir 1kt Vs 2 Vi o (B5)
=1

The operator 2 is then a quadratic symmetrical matrix of elements given by Eq. (B5)

001 -4 6—-4 1 00..

APPENDIX C
A priori: pfobability distribution
The a priori probability distribution P(¥) should fulfill the two main conditions
§G.9NPG)F = (€1
and
§ POy =1. - T (7))

This is unsufﬁment for ﬁndmg umque form of P(y) In order to introduce as little arbl-
trariness as possible one should: choose- the. form ‘of P(¥) which minimizes the functional

- IEPGY] = § PG I P(GYy: €3
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The conditional minimum of the functional can be found by means of the Lagrange
multiplicators method

§ P() In P(5)dy—A | (7, Q9)P(H)dy —p § P(7)d7, (C4)

where 1 and p are Lagrange multiplicators. Setting the first variation of (C4) equal to zero
one obtains
In P(7)— A7, £25)—(u—1) = 0

hence
P(3) = ¢, exp [A(J, 2y)]- (Cs5)
Eq. (C5) can be also written in the form
P() = ¢, exp [—4 (5, —2407)]. (C6)

The constant ¢, can be calculated according to Eq. (C2). Since P(¥) is a normal distribution

( 2A)n/2|Q|1/2

€2 = (2n)n/2 (C7)
From Eq. (Cl) one obtains
(=240
(2 L)n/Z (y’ Qy) exp [A'(y’ 'Qy)]dy
_ (2701 4
—ay® P (A7, )]y = o.
Taking into account Eqs (C2) and (C7)
(_-_21)"/2@'1/2 d _ M = ( 22)”/2( 2)—n/21—n/2—1 _ n
@u*  dALGPA(-22 ] T T
Hence
n
A=-3—. (C8)
Finally
c o ~
P(y) = cyexp l:— 3 . Qi):l . (C9)
APPENDIX D

A posteriori probability distribution

Once the distributions P(7) (Eq._(16)) and P(f |7)(Eq.(13)) are calculated the a pos-
teriori probability distribution P(3|f) can be found from Bayes theorem (Eq. (8))

P(JIf) = esP(HPS1P)
= ¢; exp {—% (7, [B+e@]7)+ (3, R*WH -1 (f, W)} 1)
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Since the last term in the figure bracket is constant Eq. (D1) can be written in the form
- PGIS) = cs exp {(7, Dy)—2(7, R* W)}
= s exp {([F—D ' R*WF], By- B~ 'R+ Wf)—(D R W], BWF))
where D = B+a@. Since (D™IRTWF, BWf) = const
P(31f) = ¢ exp {([y—D~'R*Wf], B[y—D~'R*WfD}. (D2)

This is a multidimensional gaussian distribution (cf. [9]) with the covariance matrix
Dt = (B+ad).

APPENDIX E
[Determination of Gpax

According to Eqs (20) and (21) the a posteriori probability is equal to

Bn=r

P(alf) = cqa 2 [ P(fI7)P(F)dy, (E1)

r is the degree of degeneration of matrix Q. The extremum of this distribution can be found
by means of the logarithmic derivative

In P(a|]) = In co + "T_r In ¢+1n jp(ﬂy) exp {— g G, fzy)} dy
hence )

s i fP(fly) exp {— g @ Qﬁ)} (7, Qy)dy

—In P@lf) = 2" —4 -

oo 2a

f P(J15) exp {— S G, m)} dy

L WO E
=2u T2 (75 Q7)) (E2)

The interpretation of the latter expression is as follows: logarithmic derivative of the

a posteriori probability of a-parameter equals to half the difference between the value

n—r . A NP =y =
—— and the mean value of the functional Q over the distribution P(j|f), 2

r_ .
being
a o

A P T . 0 .
the mean value of @ over the a priori distribution. Finally setting 7 (In P(a|f)) = 0,
ot

Omax Can be found from the following equation

n-—
20

L L Te (057 1 ((Pap s O TP ) = O. (E3)

max

Eq. (E3) is to be solved by the successive approaches method.
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