Vol. A53 (1978) ACTA PHYSICA POLONICA No 3

GAUSSIAN GEMINALS APPLIED FOR THE MOLECULAR
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An algorithm for the calculation of the second-order molecular correlation energy
using Gaussian geminals basis set is presented. A convenient graphical representation of
many-electron integrals is introduced. The usefulness of this graphical technique for the
reduction of many-electron integrals to simpler ones is illustrated.

1. Introduction

Among a variety of methods for the correlation energy calculation those using the
explicitly correlated functions appear to be the most successful ones [1, 2]. The same applies
also to the variation-perturbation theories leading to the concept of the so-called pair
energies. The simplest pair theory is known as the Sinanoglu method and is based on the
solution of the pair equations for the first-order perturbed pair functions [1]
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are imposed on u;; the Sinanoglu scheme is able to account for ca. 80 percent of the total
correlation energy E,.:
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The success of this method is primarily determined by the quality of variational pair
functions. As shown by Byron and Joachain [3] and Pan and King [1], the expansion of
u;; in terms of explicitly correlated two-electron basis functions w,;; (1, 2) followed by
optimization of non-linear parameters results in reasonably accurate values of the second
order pair energies. For a given basis set of explicitly correlated functions wy; (1, 2) the
most convenient way of the approximate solution of Eq. (1) is by the minimalization of
the appropriate functional [1]. Furthermore, the separation of the spin part of geminals
gives new pair equations for spinless pair functions. The efficiency of the Sinanoglu
method and the computational aspect of the variation solution of Eq. (1) depend on the
choice of both the orbital {@;} and the geminal {w;;;} basis sets. It was found that the
so-called Gaussian geminals (GG)

w(l, 2) = exp (—ara1—agrsz—briz) @

represent a satisfactory geminal basis set in atomic [1] and molecular [2] calculations.
In the case of molecules a substantial reduction of the computational effect is achieved
if the orbital basis set is composed of primitive Gaussians

g(1) = exp (—a,57) Q)

with variationally optimized exponents and origins.

For these so-called floating spherical Gaussian orbitals (FSGO) and Gaussian gem-
inals of Eq. (4) a number of useful rules for the calculation of atomic and molecular
integrals can be derived. B

The basic problem in the computer application of the Sinanoglu method is to con-
struct the following matrix elements
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@, is a space part of the spinorbital ¢;. :

In the next section a procedure for effective reduction of many electron integrals to
elementary integrals with functions (4) and (5) is shown and a convenient graphical represen-
tation is introduced. An algorithm for the construction of matrix elements (6) and (7)
from elementary one- and multi-electron integrals using their graphical representation is
discussed in Section 3. ‘
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2. Reduction of many electron integrals to elementary integrals

Any FSGO of the form (5) can be unambiguously represented by a 4-dimension array
A= {ay, Ax, Ay, AZ} Let us denote this array by a symbol A when the FSGO is a bra-

function and by A when it is a ket-function. Then the GG (4) as a bra can be given by a

; (),
graphical representation 4 b B andthe GGasaketby A b B .Letusalso
@
introduce the following graphical symbols for one- and two-electron operators:
operator ' its graphical representation
_ kinetic energy Xy e et
.nucleaf attraction PR
sum of kinetic energy and
nuclear attraction § ST ~
inter-electron repulsion o~

Thus a typical two-electron: integral:
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Let us define elementary integrals. Their graphical representation is given as follows i1
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! Elementary integral d (8) cannot be reduced by direct integration over the coordinates of that
electron on which the kinetic energy operator does not act. The reason is that the correlation factors which

. ) A
couple this electron with the electronin the — o operator are on both sides of this operator. Using Green’s

theorem these factors can be joined and the reduction can be performed- [4].
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All integrals obtained with GG’s and FSGO’s can be simply reduced to the integrals
(8). The formulae for calculation of elementary integrals have been already been published
[4]. To perform any reduction it is necessary to know how. to reduce the two elements
from which all the many-electron integrals are constructed. The graphlcal repmsentatlon
of these elements and the way of reduction is the following (the integration is performed
over the coordinates of that electron which occupies orbitals 4 and B)

reduction 1 .__A by C, I3
B bz - © X K,
C by A by D 5 . .=
reduct/onI! el 03 C Py Q.
b, B b, = e xK

where

Py = ay+ag B = b_1+bz, B> = by +b,
ay =y +B; a=7 +B1+ B2,

7181 7182 7181 Bib-
51='—_.5 52=—a 5=_—“= Y= b
o o "))1+ﬂl o
- a4A+agB - aC+6X _  apD+6,X
X = = "B—’ P c 1 Q == 2 —2'_’
?1 aP aQ

ap=51+ac,. aQ=52+aD
Examples of the three-electron integral reductions are shown in Fig. 1.

7 Q )
reduction [ K x oma— —e
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Fig. 1. Examples of the many-electron: integral. reductions to elementary integrals. Fragments. of .the
integrals which take part in elementary reductions marked by arrows are enc1rc1ed
* For the definitions. of the reduction T and II see text. § g
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3. Graphical form of matrix elements
If the advantage of the equaﬁty
KPDIA() [D(1)) = dyex &)
is taken the matrix elements (6) and (7) can be developed to?
(@G = (w1, 2)0(1, D)[A(1) + h(Z) — e;—¢;1Q(1, 2)w(L, 2))
= (w1, D)+ h(2) —e;—e;lwi(1, 2))
[ (L, D22, (Dwi(3, 2)) (ei+e)) |
+<wi(L, 2)2,(3)iwi(1, 3),(2)) (e;+e))
=<2, (Dwi(3, DIA(L) w1, 2)8,(3)>
—<wi(1, 3)2,(21h(2) w1, 2)9,(3)>
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T 2| =L, D83 [,(Dwi3, 2 (10)
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| — (L, 2B, (8,3, 2
[~ DR DR) (80,2 i ) et —ei—e)
+ 3| 00l DIB,WR,D (@ DEIRD+HQ) (1, )
" mt, DI +h2) |¢m(1)¢n(2)> (Bo(1)BA2) Iwi(L, )
F = <mdl, 2)1 - 12,00,
Z e 2)45,.(1)1 ~ 002,22, oay

Z — (w1 3)¢n(2)| l<15,(1)¢,(2)¢n(3)>

Z W DI8,(1)8,2)> (@uD2,Q)|— 12D
12

mn=1

2 Pan and King [1] took advantage of HF equatlon
hD)Dy, = e, Dy. (9a)

But it is justified only in this case when 4 is a HF opératbr. When the first order function correction is outside
the space spanned by the basis fuhctioﬁs used in the SCF calcilation, one should use Eq. (9) rather than
Eq. (9a).
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Fig. 2. Graphical representatibn of ﬁlafrik élements (QG M and (F)}a All'summations over X, Y, W, Z run
o N

up to dimension of FSGO basis set. Dxy is an element of the density matrix Dxy = Z cixciy - 4,B,C. D
=

are used for orbital factors in ‘geminals. P4p permutes indices 4 and B

Using the explicit form of 4 operator the final algorithm is obtained In the introduced

graphical representatlon it can be expressed as shown in Fig. 2.
It is easy to see that the elementary reductions required to calculate different integrals

in the matrix elements (6) and (7) are identical. This simplifies the calculations since for
instance the reduction which has been done for the integral
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of Fig. 2 can be also applied for the integral
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of Fig. 2. Our computer program for the variation solution of the Sinanoglu equation for
molecules takes advantage of this possibility.

4. Conclusions

Gaussian geminals have been applied for computing the second order energy correc-
tion in Sinanoglu method. If HF equations are solved in the FSGO basis set, then the
algorithm of the correlation correction is simple and easy for programming. Substantial
inconvenience of the Sinanoglu method is that using correlated functions as many as
four-electron integrals have to be computed, even for the two-electron problem. It results
from the strong orthogonality condition (2). However the reduction of many electron
integrals to elementary integrals runs smoothly. Calculations for LiH and BH [5] show
that even a minimal basis set for correlation energy calculation, that means one optimized
Gaussian geminal for each electron pair, gives about 60 percent of correlation energy.

The author would like to thank Dr A. J. Sadlej without whose help the present
paper could not be prepared. Also the author is deeply indebted to Professor W. Zielen-
kiewicz for his kind attitude towards this work.
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