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The variational method of calculating the thermodynamic properties of quantum
systems having a discrete energy levels system is discussed. The method is a certain modifica-
tion of Sawada’s variational method. The method permits one to calculate all the correlation
functions occurring in the problem by self-consistent means without using additional
approximations: constituent of the decoupling of higher correlation functions. The effective-

+ ness of the method was illustrated by several examples taken from'the theory of magnetism,

1. Introduction

The variatipnal methods based on thermodynamic inequalities have received increasing
attention in recent years [1, 2, 3]. These methods are employed to calculate the poles of
thermodynamic Green'’s function or just thermodynamic correlation functions. Sawada [2]
postulates the existence of a model Hamiltonian H, for a quantum system described
by Hamiltonian H, which fulfills for the assumed set of operators {C,} the following
commutation relations

[H0= Ca_l— s nga’co;’a 1.1

where coefficients ¢,, can be found through minimization of the free energy defined by
the well known Bogolubov inequality [4]. This method yielding the equation

<[Ca’ [H_HO’ Ca-z’:]—]:l:>0")'<[[ca, H_HO];s C;’-]:}:>0 = 0. (12)

The choice of a commutator or anticommutator in equation (1.2) for the calculation of
parameters &, depends on the type of commutation rules for the set {C,}. The form
of the variational equations (1.2) suggests that the model Hamiltonian H, has been
chosen so that the first moments of the correlation functions calculated with the Hamil-
tonian H, and H were equal to each other. The correspondence with the method em-
ployed in [5, 6] is visible.
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This method was used [3, 7] to calculate the correlation functions of magnetics
described by Heisenberg’s Hamiltonians, however in that case, beside the approximation
connected with the minimization of free energy, use was made of decouplings of the higher
order correlation functions [3] which could not be calculated in self-consistent manner.

Here we define the variational method sufficiently accurately as to be able to calculate
precisely all the correlation functions. The only approximation used is connected with
the minimization of free energy and selection of a base operator set. The results of the
method are exemplified by the isotropic Heisenberg ferromagnet. It was also shown how
to use the method in order to get the equation for the directions of magnetization vector
in more complicated systems.

a

" 2. Formalism of the variational method

3

Let us assume that for the given physical system described by the Hamiltonian H
there exists such a model Hamiltonian HO’ which together with operators of the given set
{O}} fulfills the following commutation relations

[H, O] = ¥, 5.0 @1

ja
The operators of the set {0;,} can be chosen in such a way that they would form a set of
eigen-operators [8] of a certain part of the superoperator H™ = [H, ...]-. Indices o and o
can stand for e. g. a number of the empty lattice site or vectors of the reciprocal lattice

while indices i, j are numbers of operators at fixed o, «’. Now we minimize the right-hand
side of the Bogolubov inequality

F[H] < FH,] = — %m Tr e ##°—(H—Hy Y, (2.2)

relative to the parameters &,. The average value ..., is defined by
(Do = Tr(e P )[Tre Mo, (2.3)

where = (KT), k is the Boltzmann constant, T is temperature. Near the minimum of
free energy F,[H,] the relation

F[Ho+06Hy] = Fi[Ho} (2.4)

must hold, where 6H, is a small variation of the operator H,. Let us further assume
that the variation 6H, is hermitian like the Hamiltonian H, and its average value -equals
zero at every temperature. Let us expand the left-hand side of (2.4) with respect to small
6H,. As a result we get

. , .
< £ dp e Fo5H e FH(H —Ho)yo = 0. (2.5)

One of the possible forms of the variation 6Ho under the assumed conditions is

if i ﬁ(al—sm)
illy, § , y z Relt=ls ;ﬁ/_Z(_ez—am)_e-ﬁ/z(e.—am)'|l> Cml, (2.6)
Lm A?J

an’
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where &, ¢, are eigenvalues of the model Hamiltonian

Ho|ly = gD}, @1
and (GJ),, is a matrix element of the hermitian operator Gi. defined as follows
Gy, = =1 &1PT[0(0])" +0L(0)*]e P2
~ e THPR[0L(0)" +0L(00) ]P0+ LI (0) T e RO
+ eﬁleo(Oi)+e~BH°0£leﬂ/2H°. ] (28)

Equation (2.5) can be significantly simplified if one takes the above defined variation
(2.6). We get
Y Y 0l {<OLH—Ho, (07)]-56+<[0; H—Ho]-(0)" >0} = 0. (2.9
ij aa’
The variation 6H, must be arbitrary in such a sense that it is an arbitrary operator in
a space {|I) (m|}, hence the coefficients w}}, are arbitrary and take on independent
values. Taking into account equation (2.9) it appears hence that the basic relations of the
variational method are of the form

(O H—Hy, (03)"]->0+<[0} H=Ho](01)" > = 0, (2.10)
and are fulfilled for every ,j and o, a’. Now, it is enough to assume that
{03} = {(0D"}, (2.11)

to get the relations (2.10) in a more clear form
<[Oia [H_Hos (Oi’)+]—]i>0 +<[[Ois H_Ho]—-’ (Oi’)+]i>0 =0, (212)

since the algebra of the given set {O;} is also very well defined. Employing relations (2.12)
one can easily calculate all parameters &2, of equation (2.1). The problem of existence of
the model Hamiltonian H, which would fulfill simultaneously equations (2.1) and (2.12)
is not clear yet. The main part of the difficulties in proving the existence of Hy comes
from the fact that in the variational method only the relations of H, with the given set
{0} (2.1) is taken into account in (2.12) and not its explicit form.

3. Thermodynamics of the isotropic Heisenberg ferromagnet

The Hamiltonian of the electron spins interacting with an external magnetic field
and among themselves is of the form

H = —ph} 85— 3 J(5;55+57S,) (.1
r f#g
The correlation function and a value of magnetization of the isotropic Heisenberg

ferromagnet can be calculated applying equations of the variational method (2.10) with
a model Hamiltonian H, which together with operators of the set

{07} = {S7, S}, S; 8%, %573, (3.2)
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fulfills the commutation relations

[Ho, 0%] = ¥, £,05 (3.3)
g
where indices f, g denote the lattice sites. Let us note that if we want the model Hamil-
tonian to describe correctly the thermodynamics of the interacting spin system it should
exhibit at least principal features of the symmetry of the Hamiltonian (3.1). Let us assume
that H, is translationally invariant and also the rotation around the third axis does not
change its form. From these assumptions it follows that the relation

[H, [0}, (0)*]-1->0 = K[[0%, H—H,]-, (0)*]->

+<[0%, [(0)", H—H,]-1->0 = 0 349

holds. Relations (3.4) for f'# g are trivial, while there are two cases for /= g. In the
first case, when the commutator [Of, O7 /)¥]_ is a linear combination of operators 1,
8%, ..., (% 28 equation (3.4) becomes obvious when we make use of the translational in-
variance of Hamiltonian (3.1). In the second one, when [O%, (O})*]- is an operator
(S7)? or (S7)? we can prove the correctness of relation (3.4) employing the invariance of
H with respect to the rotation around the third axis.

Combining equations (3.4) and (2.12) we get

([0%, [H—Ho, (0))"]-1->0 = 0, (3-3)

from which we can determine the coefficients e}'g for the isotropic ferromagnet. To calcu-
late numbers ¢}, defined by

[Ho, S;71 = Y 7.,57 (3.6)
g
we shall make use of two from among equations (3.5). These are
LS5, H—Hol-.5;1->0 =0, (3.7)

and

[IS7, H=Hol-, 5,571 = 0. (38)

We get the explicit form of equations (3.7) and (3.8) employing known spin operator
commutation rules. Performing the Fourier transformation [9] we get

X
ek = ph+2(Jo=Jf + 20— JK) — (3.9

and from (3. 8)

3Y +- X —-S(S+ 1o
of = W4 205 I 2= I e B, (3.10)
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where
b = fz e el .
-g
g =480 4= <355’ =S(5+1))0, (3.11)
and
. A .
)L = N —J— <Sks—k>05 (3.12)
= 0
i Jr
Y =— = R eSiSaa 3.13
N ) TSI (3.13)
T
1 Ir . pet =il
=— — (e —1)"". 3.14
7D ey G.19)
&

Comparison of (3.9) with (3.10) yields the first equation connecting the correlation func-
tions X and Y

—2X+38Y = S(S+1)>. (3.15)

Now we assume f = g, i = j, and O% = S in equation (3.5) and afterwards we perform
a summation over every direct lattice site. Hence we obtain

Zk: &Sk SEir0 = ; <[S7, H]-S7 >0 (3.16)
When all commutators of the right-hand side of (3.16) are calculated, one can apply the
identity for spin operators

St = S(S+1)—8;787 —(83)° 3.17)

to obtain equation (3.16) in. the form
(1+29=2f)X+Y = S(S+1)o—(A+0)f~2f (9~1)8, (3.18)
where o
1 : v
P = N Z (exp fer—1)" 1. (3.19)
%

From the set of equations (3.15) and (3.18) we calculate the correlation fufictions X and'¥"
and then, applying their explicit form we obtain the excitation energy

& = uh+2(Jo—J)SR, (3.20).
where

ol S(S+1)o—f2

C S(S+1)=3fs" (3.21y
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For spin § = % we obtain

Jo—Ji

& = ph+
s g

(3.22)

which coincides with the result derived in [7] and [10]. We can calculate the N-th power
of the z-component of the spin vector using the formula [11]

28

O DTS ) Y L5) P

Near the phase transition point we expand the magnetization ¢ and factor 1 = (3(5%)?
—S8(S+1)) with respect to small (1+2¢)~* applying formula (3.23). Hence we ob*ain

_28(S+1) e ;
iy +0(p™2), (3.24)

25(S+1) (25—1) (25+3) e
A= = +0(p7?). (3.25)

Functions ¢ and f are to be expanded with respect to temperature

1420 ~ ) 3.26
+2¢ SREJ, (3.26)
(-1
L 2
s 2SRB.J, (20

The renormalization factor SR, defined in (3.21), behaves for high temperatures as
_ 25(5+1) (25 +3) (25—1)
T 3(1+29) 108(S+1) |’

Combining expressions (3.24), (3.26) and (3.28) we obtain the following formula for
the phase transition temperature

_28(5+1) I(1)—1 (2S+3) (2S 1)’
R o] "[_ (1)  10S(S+1) ]

(3.28)

: [1(1)—(1(1)—1)

(3.29)

and for S = 1 we get the result following from the molecular field theory. The expression

&
i3 1+2¢_—Z i N—Z( = 2 ﬁsk L RET (3.30)

permits one to write down the magnetization behaviour as

) T 1/2
~(1— T) . (3.31)
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and the magnetic susceptibility
T -2
Wit 3.32
2~(7 1) . em

near the critical point, which means that the critical indices assume values § = 1 and

y = 2. At low temperatures, the magnetization and renormalization factor SR behave
like

0 =S—g+Q5+1)p>** 1+ .., (3.33)

SR =S—f+o¢+ ..., (3.34)

whereas the expansions of the functions ¢ and f with respect to temperature are

TS REANECT R R ek L T 3.35
‘P—Z(7)<E> +IZ(7)<~R—> + 2 Z(i)(}_) + - (3.35)

7 3/2 o NE 5/2
f=2z(3 <—§> = z(3) <_E> + .. (3.36)

where

3kT
T =
4nJ,S

Substituting (3.36), (3.35) into (3.34) we get

o0
and z(a) = Y n%eTHMn
n=1

SR = S—nz(H)>% 4 ..., (3.37)

and
3 3302 3
6= S—2(3)t¥2 Z” 282 - ._3_;‘_ 2(Zy"2 — % DD+ .., (338)

Within that the term proportional to 7 in the expression for ¢ appears in the case of
S = % only. The obtained results (3.37) and (3.38) coincides with those of Dyson [12].

4. The equations for the direction of magnetization

We restrict our considerations to the case when a ferromagnet is isotropic in such
a sense that every site of its crystalline lattice responds in the same way to an external
magnetic field and internal interactions. We rotate the coordination system in such a way
that a new third axis coincides with the magnetization axis.

For our Hamiltonian we derive a new model one which for a given set of operators
{O;} fulfills the commutation relations

[Ho, 0]~ = ¥, &u0;. (CaY
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Parameters ¢.., are to be calculated employing equations of the variational method. These
numbers obviously depend on an angle of rotation of the coordination system. Now
we define the set of Green functions

A OBI0fY = —if(®) <[OD), 0410 4.2)
where {...D¢ is:a thermodynamic average value being calculated with the model Hamil-
tonian H, and A(z) is the operator in a Heisenberg representation involving also the model
‘Hamiltonian H,. For these, Green functions there holds an identity

€OU0Ys = €O}0y—p, (4.3)

where (( | ))E is the Fourier transform of function (4.2). If the parameters e, are known
then it is easy to find the explicit form of Green’s functions (4.2) and to make use of the
equation (4.3). Each of the equations (4.3) defines in a unique way an angle by which
the system of coordinates should be rotated to get the third axis coinciding with the
magnetization one. It means that equation (4.3) is the equation for the direction of magnet-
ization. Notice that for the isotropic Heisenberg ferromagnet the rotation angle sought
for is exactly that formed by the external magnetic field with an old third coordination
system axis. In other words the magnetization in its own direction superimposes the
external magnetic field.

5. Discussion

A new possibility of employing the variational method has been indicated. The varia-
tlon 0H, was defined in such a way that the calculation of the correlation functions for
a system with a discrete energy levels system can be done in a selfconsistent way. It was
found that the reasonability of results obtained by the method at hand depends also on an
appriopriate choice of the set of operators {Ol}. We propose to choise these operators
in such a way that the obtained set is a solution of the respective eigenproblem [8] for
a part of the Hamiltonian of a system described.

The var1at10nal method has been verified for the isotropic Heisenberg ferromagnet.
It was shown that the low temperature results agree with those of Dyson [12] and others
[7, 10] and the high temperature ones with those of Oguchi [7]. The phase transition
temperature as calculated using formula (3.29) relates to the other results as follows

RPA (3. 29) Tahir-Kheli ___ Oguchi __ MFA
19 LA 3 =T = T!

for § =1, and

RP. 3 Tahir- i <O iv M
Tc A < Tc(3 29) < Tc ‘ahir-Kheli a0 Tc guchi L& Tc FA,

for S >
It appears that the correlation function X = — E <S"'Sz o near the phase

transition temperature as calculated by the method presented here changes its sign from
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positive to negative regardless of the choice of the basic set of operators. However this
fault cannot be avoided by this method. Therefore the correctness of results obtained
by the use of the variational method as well as other ones [6, 7] for high temperature
is doubtful. The result obtained for low temperature are very correct and conformable
to [12, 10]. For T < T, the new method of deriving equations for direction of magne-
tization was proposed. Since results obtained for simple spin Hamiltonians are rather
trivial, we did not present the calculations restricting ourselves tc the presentation of
the problem itself.

Study of the magnetization directions in magnetics dlsplaymg anisotropy of the
crystal-line field or exchange type are to be continued.’

The author is greatly indebted to Professor A. Pawlikowski and Dr W. Borgiel for
helpful remarks and stimulating discussions.
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