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The parabolic mirror, which has been used as a Fourier-transforming element produces
the Fourier-transform of the input objects placed in front of it. The information carrier
signal is spherical in nature as it is originated from a point source of light. The gaussian or
paraxial approach has been adopted to relate the amplitude distributions at the object
plane and the Fourier-transform plane. This relation comes out as the Fourier-transform
relationship. The exact Fourier-transform has been obtained from this general expression
by imposing certain conditions. Thus the optical parameters which favour this relationship,
obey Newton’s formula.

1. Introduction

Newton’s formula is applicable for focussing optical elements, e.g. lenses and mirrors.
Husain-Abidi and Krile [1] have discussed the advantages of paraboloidal mirror segment
as a Fourier-transforming element over the utility of Fourier-transform lenses. They
have predicted the phase transformation property of the parabolic mirror theoretically
and supported the results by experiments. The plane wave front as an information carrier
signal has been utilized in their investigations. Kasana et al. [2] treated a more general
case by considering the spherical illumination as an information carrier signal and establish-
ed some theoretical results and facts regarding the Fourier-transforming properties of the
parabolic mirror.

In this paper, the general Fourier-transform relationship has been treated to have
the exact Fourier-transform. This expression is obtained by omitting the phase term
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involved in the expression. Thus this condition gives a modified relation which is known
as Newton’s formula. This is a logical consequence of the derivations established for
predicting the amplitude distributions at various planes.

2. Optical configuration

As shown in Fig. 1, Pr is the point source of monochromatic light which propagates
the spherical waves. The input transparency function S(x;, y;) is placed in plane Py at
distance u from Pr and at distance F from the mirror vertex. P,(x5, y,) is the mirror plane.
Ps(x3, y5) is the observation plane, where the Fourier-transform of the object-function
S(xy, y1) occurs. The separation between the planes Py(xy, y;) and Ps(xs, ys) is equal
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Fig. 1. General Fourier—transfornﬂng configuration

to V. For simplicity the observation plane P3(x3, y3) has been taken parallel to the object
plane P,(x;, ;) and normal to the optical axis otherwise it may be obtained somewhere
by tilting the mirror segment. However, the results will not show any marked deviation.

3. Theory

The disturbance at any point in plane P;(x;, y;) due to spherical illumination origi-
nating from the point source Pr is given by

U(r) = exp (ikr)fikr, | 1)

where r is the distance of the point of interest from Pr. If this point exists in a plane at
a distance u from Pr along the optical axis, the disturbance at this point can be predicted
by using the paraxial approximation and

U(r) = exp [ik(x} +y)/2u]. @)

The constant phase factor has been omitted here.
Now the amplitude distribution just behind the object function in the object plane
can be written as

Uy(xy, y1) = S(xy, ¥1) €Xp [ik(x% +yD)/2u]. ©))
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The amplitude distribution near the mirror surface can be calculated by using the Fresnel
diffraction formula [3]

Ui 32) = 0 [ik(+5128] [ [ exo 3 1wt 17) 62499

% 8(xy, y;) €Xp [—ik(x1x2+y1y2)/F]dx1dy1. 4

When this disturbance strikes the mirror surface, it introduces a multiplicative phase
transformation.

T(x2, y2, F) = exp [—ik(x3 + y3)/2F]. )

The constant phase term has been neglected here. Hence the amplitude distribution over
the mirror surface is

U;(xZ’ y2) = T(st Yas F)UZ(st y2)' (6)
Using the equations (4), (5) and (6)

Ui, ) = ] exp [ik(1fu-+ 1IF) (2 +yD)2]

X 8(x1, y1) exp [ —ik(x1 x5+ y1y,)/Fldxdy,. @)

Similarly the amplitude distribution in plane Ps(xs, y5) can be calculated

ik
Us(%3, y3) = exp [52— 2+ YD I(F+ V)]
% ik
X ﬂ S(xy, y1) exp [—2— fu+1/F) (x]+ yf)] dx,dy,

x_JJ exp [= k{raey[F+x5I(F+ V)4 320/ + 75/ + V)]

x exp [ik(x3 + y3)/2(F + V)]dx,dy,. ®
Let

X3[(F+V)+x/F = Ap, y3f(F+V)+y,/F = Aq. ®

Now considering the second integral of Eq. (8) we have
lk 2 ;2 d " .
' €Xp ) (x2+Y)(F+V) | exp [ —2ni(px, +qy,)]dx,dy, (10)

= Fourier transform of exp [ik(x3 + y2)/2(F + V)] at (p, q)
= exp [~nid(F+V) (0*+47)]. - (11)
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Putting the value of p and ¢
ik , '
= exp [E (F+V) {(%4/F +x,/F + V)2+(y1_/F+ys/F,+ V)Z}} . (12)

Thus by using Eqs (8) and (12), the amplitude distribution in the observation plane
Piy(x3, ys) is )

Ny -k N
Ustca o) = [[ e[ 5 (1P T ) 622

: —ik T,
X 8(x¢, y1) exp [T (x1x3 +.V1Y3):| dxdy. 13)

This equation shows that the functions S(xy, y;) and Us(xs, y3) are the Fourier-
-transforms of each other having the phase factor and a constant magnification equal
to (AF).

To have the exact Fourier-transform relationship, the phase curvature involved in
Eq. (13) must vanish. Hence-

1u+1/F—(F+V)/F? = 0, (14)
by solving it
uV = F2, (15)

This Eq. (15) is nothing but Newton’s formula. If this Eq. (15) holds good, the exact
Fourier-transform can be written as follows;

Us(xs, y3) = [[ SCxy, p1) exp [—2mi(p*x,+q'yy)] dxidys, (16)

where p! and ¢! are the reduced spatial frequency co-ordinates
P =x/AF, gt =YsliF a7

Thus the spatial frequency spectrum will be free from phase curvature only if Newton’s
formula is valid. This favours the correctness of the treatment.

4. Conclusions

Newton’s formula is a consequence of the treatment applied to a Fourier-transforming
configuration to have the exact Fourier-transform. The spherical wave front as an infor-
mation carrier signal has been considered. This is also the essential condition to achieve
the exact Fourier-transform relationship between the amplitude distributions in the
input object plane and the observation plane. .

The signal waves are reflected by the mirror. The reflected waves are modified by the
phase-transformation function T(x,, y,, F) of the mirror. These waves display the infor-
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mation of the object function in the form of Fourier-transforms. Hence the filter for
reflected waves may be used to pass or block the information existing in Fourier-trans-
forms,
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