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Four-boson spin-waves are constructed to represent thé low-temperature collective
states of spin-1 systems with strong single-ion uniaxial and orthorhombic anisotropy fields
and with weak antiferromagnetic exchange coupling. Necessary conditions for the. stability
of such systems and the phase boundaries are derived. Effects of an r.f. field are investi-
gated. These effects are different from those: characteristic for systems with weak ferro-
magnetic coupling. In particular some of the parallel pumping processes are absent and new
small-energy incoherent resonances appear.

1. Introduction

Recently Cieplak and Keffer [1] have presented a multi-boson spin-wave theory to
describe the low-temperature behaviour of paramagnets, ferromagnets, and antiferro-
magnets whose spins are located in strong single-ion anisotropy fields and are coupled
by weak exchange interactions. The different sets of bosons are particles excitable to the
different eigenstates of the single-ion part of the hamiltonian, and boson representations
of the spin operators are constructed by a matrix-elements-matching method. The method
has been applied to the spin-1 systems with uniaxial (either easy or hard axis) and ortho-
rhombic anisotropies, and to the spin-2 systems with cubic anisotropy. The exchange inter-
action has been assumed ferromagnetic-like. Subsequently, effects of oscillatory magnetic
fields have been investigated. It turns out that such a field can produce three phenomenas:
a parallel pumping of magnon-pairs, a coherent resonance with % = 0 magnons, and
an incoherent resonance absorption between the excited states. In one domain of param-
eters (so-called region S) magnon relaxation times have also been estimated.

... Most of the known. spin-1 systems with dominant uniaxial and orthorhombic anisot-
ropies, of strength D and E respectively, turn out, however, to be weakly coupled by an
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antiferromagnetic-like exchange. These are the Ni++ compounds. The typical example
is the salt NiSnClg - 6H,0, studied by How and Svare [2] and by Friedberg and co-
-workers [3]. This salt has, at 42 K, Dfky = +0.65K, |E|/ks < 0.07 K and the antiferro-
magnetic exchange constant J/kp ~ 0.02 K. Other examples are NiCl, - 4H,0, investigated
by McElearney et al. [4], with D/ky = —11.5K, Elkg =.0.1 K, and 2J/kg~ 525K;
Ni(NO,), - 6H,0 [5] with Djkg = +6.43K, Efky = +1.63K, and 2J/ky = 0.6 K;
Ni(CH,COO), - 4H,0 [6] with D/kg = 5.79 K, Ejky = 227K, and 2J/ky = 0.08 K
(below 4.2 K). v '
It seems therefore desirable to describe the collective states of the spin-1 systems
with a weak antiferromagnetic coupling. We shall do this in the present paper using the
method of reference [1]. We shall see that the r.f.-field-effdcts pattern is in several respects
unlike the one for systems with a weak ferromagnetic coupling. The major difference is
the occurence of a new incoherent resonance absorption at a small, proportional to J,
energy which corresponds to transitions that essentially flip sublattices. The other difference
is that, when the r.f. field is applied parallel to the uniaxis, some of the pumping processes
disappear. The absent processes are those in which magnons of the same kind are excited.
. In this paper we shall discuss the case of the static field applied parallel to the
uniaxis, so the hamiltonian under study is
# = ¥ {D(SH?+E[(S)* (D]~ HSH+27 3 5,8, (L.1)
i N

H denotes the magnetic field multiplied by the Boht magneton and by the Landé factor.
The anisotropy constants can have either sign. The J-constant is positive and much smaller
than either | D}, or | E|, or H. The exchange coupling extends between the z nearest neighbors.
IfD >0,|E|<D,and H< H = (D?—E*)'?— O(J) the ground state of the system
is a singlet with zero energy. The two sublattice moments are therefore formed by local
excitations, from the singlet state, in opposite directions. Following reference [1] we shall
call this. region S (small magnetic fields). On the other hand if H> H,, = (D*—E?'?

+0(J) with D >0, |E| <D the ground state is a product of the states =

1= = (WA {[(H? + B2 + H] |+ 1= [ +ED2=HT?|- 1)}, (1.2)

which are the eigenstates of the single-ion part of the hamiltonian, corresponding to the
eigenvalue D—(H?+E*)"?, and where

N = (HZ +E2)_1/4,

)+t for E=0,
T=9%-1 for E <0O.

In this case we speak of the region L (large magnetic fields). In the region L the sublattices
have nonvanishing moments along the z-axis. The two regions are separated by a small:
intermediate region of width proportional to J, where a canted configuration [7, 8] should
be present. In this region the two lowest energy levels are heavily mixed by exchange
and our theory does not apply there. If D < 0 or if |E| = |D| then the system is in the
region L at any value of the magnetic field.
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In Sec. 2 we shall construct the spin-wave theory for the region S and the stability
criteria will be derived. Subsequently we shall discuss the possible effects .of the r.f, field.
In Sec. 3 the analysis for the region L is presented.

2. Region S

Following reference [1] we introduce two sets of Bose-operators, a; and b,, for the 1 N
sites of the first sublattice, and two sets of operators, 4 j and B, for the second sublattice.
The o;" and A;’ operators excite the | —); ; states out of the ground state, 10>;;)- On the
other hand b;" and B excite the third and the highest, state of energy D +(H?2+E?)!/?
out of |03, ;,. The spin-operators representation can be obtained by the operator-matching
method and it reads

Sf = ¥ *[H(a;i a,—b; b))+ E(a; b;+b; ay)], (2.1a)
S§ = M{[(H*+E>'?+ H] (a4} +b)+n[(H*+ EH\> —H]Y*(b} —a)} + ..., (2.1b)
S5 = (SHt; (2.1¢)
and

83 = —,/VZ[H(A;AJ.—B;Bj)+E(A;’Bj+B;Aj)], (2.2a)

S; = M{[(H*+ED'* +H]V*(B} +4,)
+;1[(H2+E2)1/2—H]1/2(B,.—A;)}+ (2.2b)
S; = (SH. (2.2¢)

The cubic and higher order terms in (2.1b) and (2.2b) have been omitted.
In the harmonic approximation the spin-wave hamiltonian becomes

H = ; {[ID-(H*+EH'] (af a+ A{ 4)

+[D+(H*+E»"*] (b} b, +B; B)
+2Jy(k) (ay AL, +a A _,+ b B, +b,B_,)
+2JEN *y(k) (b B+ B; b,—a; A,— A ap)
+2JHN*)(K) (a7 By + By ay+ byt A+ b )} + .., (2.3)
where
@ = (3 N)'? Y e™* g,
and l

wK) = &
[

with & denoting the positions of the nearest neighbors. The form of the quartic and higher
order single-ion terms, if needed, can be obtained by employing the correspondence
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between our spin-representation and the rigorous one due to Homma et al. [9], which has
also been used by Ishikawa and Oguchi [10].

In order to find the spin-wave energies we found it convenient to perform first a partial
diagonalization of (2.3) without the terms proportional to 2JHA ?y(k). As a final result
we obtain the following four branches of energies

&14(k) = {D*+ H>+E*—AJEy(k)—8J2H* A *y*(k)
+2D[H? + E* —4J Ey(k)+ 4777 ()] 7?12, (2.4a)
and
£3,4(k) = {D*+H*+E*+4JEy(k)— 8JZH? N *y*(k)
+2D[H? + E* +4J Ey(k)+ 477y (k)] 2 }/2. (2.4b)

These four modes merge into two in the absence of the orthorhombic anisotropy. Consider
now the case of the vanishing magnetic field. For positive E the energy &, is minimal.
On the other hand for negative E—e, is minimal. The corresponding k = 0 magnons
go soft when

4Jz = D—|E|. (2.5)

Tt means that the theory applies whenever 4Jz is smaller than D — |E|. For slightly bigger J
the system should be in the intermediate phase and for even bigger exchange the system
becomes antiferromagnetic. Note that the condition (2.5) coincides exactly with
Moriya’s [11] criterion for a long range order given in his study of the antiferromagnetism
of NiF,.

An inspection of the energies (2.4) leads to the conclusion that the system becomes
unstable when H = H;:

H,, = (D*—E)'"*=2[(D+|ED/(D— \E|]}2Jz+0(J?). (2.6)

This marks the upper boundary for the region S. The equation (2.6) coincides, in the
first order with respect to J, with the critical field H, 4 for systems with a weak ferromagnetic
coupling. _ . .

If we neglect terms proportional to J2, ‘the hamiltonian (2.3) can be brought into
its diagonal form:

# =Y [EK)er e+ ek)Ci Tt (k)di di+e2()D; D] +0(D+ ..., .7
k
with
(k) = D —(H2+E?)\?> £2JEN *y(k) = &5,4(k)+0(J*), (2.82)

and

(k) = D+(H?+E) P FUEN (k) = &,,5()+0(F), (2.8b)
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by means of the following transformation

a4 = '\/— Lee+Citp- (C v—CLo+a(d— Dy, (2.9a)
1 : :

A = 75 [Ck“ckfp—(Ctk+Ctk)_Q<dk+Dk)]a (2.9b)
b, = [di+ Dt po(d =D+ qlo— Col, (2.99)

\/,
1 . :
By = ﬁ [Dy—dp—po(d,+DI)—qle,+Co], (2.9d)
where I
ps = JIDL(H2+EY]7y(k), (2.108)
and
g = JHD ' A4 *y(k). (2.10b)

Consider an oscillatory field of frequency w applied along the z-axis. The field will
couple to the two sublattices simultaneously, i.e. it will couple to

Y Si+YS;
i J
= Z {-k/VzH(CkJr Ck+C;CIc"deDk—DI:—dk)
P’

+ N P[E+2JH*D ™ 4 29(k) ] (Cff dy+dif C)
+ N E-2JH?D ™Y A 29(k)] (¢ D+ Dy cp)
+2JE(D*~H*=E*)""y(k) (¢ DY+ D_ye,—dif CLi—diC_)+ 0.  (2.11)

The field will therefore trigger the following processes:

(1) The incoherent resonance [1] at a very small frequency w = ¢ “(k)y—eS(k) = e°(k)
—&%(k) = 4JEN > y(k). This is the process in which a ¢,-magnon is replaced by a C,-one and
similarly @, by D, (with the inverse processes also present). This resonance disappears
at H = 0.1t is also absent when the coupling is ferromagnetic-like, since there is no distinc-
tion between the sublattices then. A study of such a resonance may supply additional
information about the parameters in the hamiltonian. However the net absorption will
be small since it is proportional to the difference in population between the ¢ and C-levels
and none of them is the ground state (in addition they differ only slightly in energy).

(2) The incoherent resonance at = ¢ (k)—sc( k) = e”(k)—&°(k) = 2(H*+E»Y? In
this process, which is very similar to the one found in the system with weak ferromagnetic
coupling, the whole spectrum of the C-magnons is replaced by the d-ones, and similarly
c- by D-magnons.

(3) Parallel pumping of the ¢,, D_, particles at @ = &(k)+&°(k) = 2D +4JEN ?y(k)
and parallel pumping of the C_,, d, particles at w = 2D —4JEA ?y(k). These processes
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are similar to the pumping of unlike magnons in systems with weak ferromagnetic exchange.
On the basis of an analysis presented in [1] we expect that at H = 0 and at very low
temperatures the threshold amplitude of the r.f. field triggering the significant power
absorption is at least equal to D. At temperatures comparable to D—|E| the process
requires much more intense fields, namely proportional to D|E|J-!.

Note that, unlike the ferromagnetic coupling case, no pumping of the types ¢¥c;
or CT,CF, or CI,eif appear. Only pairs of excitations to essentially different levels
can be pumped. ]

If the r.f. field is applied along the x-axis it can produce a coherent resonance with
the C, and D,-magnons. On the other hand if it is applied along the y-axis a coherent
resonance with the ¢, and dy-magnons will occur.

3. Region L

In this region we again introduce four sets of Bose operators. The operators a;
and A} excite the [0);;, state out of the |—);, state and the operators b and B} excite
the third level. (The relative positions of the two excited states may switch under the
influence of the field.) The operator-matching method yields

S? = N H+E(b; +b)—Haj a,—2Hb b]+ ..., (3.1a)

S = N{[(H*+E>Y*+H]"*(a;+a;" b)
—q[(H*+E>'?*—H]"*(a] —b; a)+ ..., (3.1b)
ST = (SH (3.1¢)

and .

S% = —A’[H+E(B] +B)—HA A;—2HB] B;]+ ..., (3.22)

S} = ¥/ {[(H*+E»"*+H]'"*(A] +B; Ap)
—n[(H*+E*'*~H]'"*(4;— A]B)+ ..., G2
S; = (S (3.2¢)

The spin-wave hamiltonian becomes
# = N[D—(H>+E*'*—JN*H?*Z]
—2J(& N2/ *HEz(bg + bo+ By +Bo)
+[(H*+E>'*-D +2J./V41_12z] zkj (a;f ap+ Ax Ay

+2J Z y(k) [ai AL+ akA—k_E'/VZ(alek +4; ap)]
k
+[2H?+ E)2 4 4Tz H?] Y (b b+ B BY)
k

—2J/V4E2;y(k) (b BY +Beb_y+Bif b +bi B+ ... (3.3)
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The linear terms can be eliminated by the transformation
by = by+E& N)YY2JHEz A S +0(J%), (3.4a)
B, = B,+ & N)Y2JHEz AN ®4+0(J?). (3.4b)

Due to the presence of the triple interactions, which should be written down in (3.3),
the transformation (3.4) introduces new harmonic terms to the hamiltonian., These are
however proportional to J? and will be neglected. The hamiltonian rewritten in terms of
the operators b, and B, looks like (3.3) with the linear terms missing.

The four branches of the spin-waves excitations have the energies

e12(k) = {{(H*+E*)'? =D+ 27z *H? £ 20EN *p(k) > — 407y (k) } /2 (3.3a)
and
83 A0 = 2{[(H? + B+ 20z A *HP £ TN *E* ()2~ PASERX (k)2 (3.5b)

Agam the four branches degenerate into two if E = 0.
The inspection of energies (3.5) leads to the following conclusions. If D > 0 with
|E| < D, then the configuration of region L becomes unstable at H = H,:

Hg, = (D*—E*Y?4+2JZIE|D™'[(D + |ED/(D— [E)]+ 0(J?). (3.6)

This is the lower boundary for the region L. If [E| > |D| then at H = 0 the system remains
paramagnetic if 4Jz < |E|—D. For slightly bigger J our theory does not apply at H = 0
since the two lowest states are mixed and the system is in its intermediate phase. All of
the three levels are mixed if 2Jz > |E|. The system is then an antiferromagnet. The theory
works then for sufficiently strong magnetic fields that unscramble the levels. Finally if
D < 0O and |[E| < |D] the crystal is antiferromagnetic for 2Jz > |E|. In particular a system
with E = 0 is an easy axis antiferromagnet (with two modes of oscillations) for any J.
If we switch off the E anisotropy first then the theory yields frequencies which never become
soft, even for vanishing H. The theory is then meaningful as long as D 2 4Jz.

Now, if the J? terms in the energies are neglected, the harmonic hamiltonian can
be brought into the diagonal form like (2.7), with ¢>“(k) = &1,2(k)+0(J?) and &*°(k)
= &3,4(k)+ 0(J?), under the substitution

a = \/— [ei+ Co—p-(cZ,—CIY]+0(JI?), | (3.7a)
Ay = \/2 [Ci—c—pilci+CIY]+ 0P, (3.7b)
by = —= [de+ D+ 3 TN CE*y(k) (DT —d )]+ 0, (3.7¢)

\/_

i
B, = —=[Dy—d,+% JN°E*y(k) (d 1, + D1 )]+ 0. (3.79)

N2
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The r.f. field applied along the uniaxis will hence couple to

Y Si+Y. Si=—3N V2 ARE3T2(dy +dy)
i J
—NPH Y (¢f CotCff ¢ +2d; D +2D; d)+ O(J ). (3.8)
k

‘In' contradisticction to the ferromagnetic exchange case no parallel pumping will be
triggered. In the former case the r.f. field could pump pairs of like magnons provided
E # 0. In addition the coherent resonance with the £ = 0 d-magnons is here much weaker
than for ferromagnetically coupled spins, since the matrix element is proportional to J.
The third difference is the occurence of the new incoherent resonances ¢ Cy and d D,
which should happen when w = 4JEA"?y(k). These incoherent resonances disappear
at H = 0.

On the other hand the pattern of the possible effects induced by the r.f. field applied
along the x-axis is very similar to the one characteristic for systems with weak ferromagnetic
exchange. The field will then trigger a coherent resonance with the k£ = 0 C-magnons,
two incoherent resonances ¢;d, and C;D, at w = (H*+E»'?>—D+2Jz4*H?, and
finally the parallel pumpings of unlike particles ¢ D¥, and CT.dy at o = 3(H*>+E*)"/?
—D+6JzA*H?>.
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