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Spin-wave theories are constructed for two kinds of systems with a weak ferromagnetic-
-like exchange coupling: (1) spin-1 systems with uniaxial and orthorhombic anisotropies,
with the magnetic field applied perpendicular to the uniaxis; (2) spin-2 systems with cubic
anisotropy. These theories are based on the matrix-elements matching method proposed
recently by Cieplak and Keffer. Spin-wave modes and stability conditions are found. The
possible effects of an r.f. field are described. For the spin-1 systems with a perpendicular
static magnetic field parallel pumping processes are predicted even in the absence of the
orthorhombic anisotropy field.

1. Introduction

Spin-wave descriptions of the low temperature behaviour of magnetic materials with
localized spins have usually been set up for systems in which the exchange field dominates
the single-ion Zeeman and anisotropy interactions [1]. Spin-wave modes are, however,
also present in materials with large single-ion fields but small exchange fields. These
systems are either paramagnetic or ordered ones.

Two new features are encountered in such materials, The first one is that the ground
state of the system, i.e., in the first approximation, the ground state of the single-ion
part of the hamiltonian, does not have to coincide with the state of maximal alignment.
Instead the ground state may be a product of singlet states or a product of mixtures
of spin eigenstates. The second new feature is that the excited spin-states are, in general,
not equidistant. Even at low temperatures they can be occupied simultaneously, in the
statistical ensemble. g

Therefore multi-boson spin representations are appropriate to analyze spin-wave
excitations in systems with weak exchange fields at low temperatures. A matrix-elements

* Part of a thesis submitted to the University of Pittsburgh in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.
"** Present address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, HoZa 69, 00-681 Warszawa,

Poland,
423)



424

matching method of the construction of such representations has been presented in the
first paper [2] of the series. The method is a two-step procedure. First one introduces
sets of bosons which excite the single-ion levels. Then one constructs the spin operators
out of these bosons in a way that reproduces the matrix elements of the operators in the
subspace of the single-ion levels.
In this article we shall continue to discuss systems of N spins described by a hamiltonian
of the form
# =Y #-27 Y 88, (1.1)
i N

We assume that the spins are coupled by a weak, ferromagnetic-like, exchange
interaction, of strength J > 0, between the z nearest neighbours. The crystal is in a single-ion
dominated regime if J is much smaller than one of the anisotropy constants or a magnetic
field in the single-ion hamiltonian ;. .

In Ref. [2] we have analyzed spin-1 systems with the uniaxial D and orthorhombic E
anisotropies and with the magnetic field H applied parallel to the uniaxis (the symbol H
incorporates the Landé factor and the Bohr magneton). For D >0, |E] <D and
H < (D?*—E?)"?— 0(J) the ground state of the system is a product of singlet states. The
system is then a paramagnet. This region of parameters we called region § (for “small
magnetic fields”). For H slightly exceeding the above value the system is in the intermediate
phase. There the two lowest single-ion eigenstates are mixed by exchange, as the anisotropy
field becomes compensated by the magnetic field. The exchange field ceases to be a small
perturbation there. In fact it produces a long-range order with a transverse magnetization
[3, 4]. The matrix-elements matching method does not work in the intermediate region.
For H > (D*—E?)"?4+0(J) the ground state is a product of states which are linear
combinations of states |+1); and |—1);. This is called region L. Now the magnetic field
induces a magnetization along the z-axis. The system is also in the region L for any H
if |[E| > |D| or if D < 0. In the latter case the system is ferromagnetic when 2Jz > |El,
in particular when E = 0.

The magnon hamiltonians for the two regions S and L turn out to be of different
forms. In the region L linear terms in the Bose operators appear. These terms are eliminated
by a unitary transformation of adding to the operators a constant proportional to J.

For both regions the spin-wave modes have been found and the stability conditions
with respect to the size of H and J have been obtained. Subsequently, the possible effects
of an oscillatory field on the systems have been discussed in Ref. [2]. This field will couple
to the component of the total spin in the direction of the r.f. field. In the Heisenberg
picture the component of the total spin participates in various oscillatory motions. The
field can tune into the eigenmodes of these oscillations. It turns out that in this way
the r.f. field can trigger the following kinds of processes: a parallel pumping of pairs of
magnons with opposite wave-vectors, a coherent resonance with & = 0 magnons, and
finally an incoherent resonance between the excited states, in which a spectrum of magnons
is involved.

In this paper we set up a similar spin-wave theory for two types of systems with weak
exchange fields: (1) a spin-1 system with the uniaxial and orthorhombic anisotropies,



425

with the magnetic field perpendicular to the uniaxis; (2) a spin-2 system with a cubic
anisotropy (the lowest spin that can distinguish cubic symmetry is 2). An approximate
theory for spin-4 systems (Pr®+) in the absence of a magnetic field was worked out by
Grover [5].

For both systems of our concern in this article, we find two different ground state
configurations. The corresponding magnon-hamiltonians resemble either that for region S
or that for region L. However, in the cubic system four, and not two, sets of bosons
have to be introduced.

The analysis of magnon modes and of possible r.f. field-effects in the spin-1 system
with the perpendicular static magnetic field is performed in Sec. 2. It turns out that, unlike
the parallel static field case, the presence of an orthorhombic field is not necessary for
parallel pumpings and incoherent resonances to occur. A similar discussion for the spin-2
system is presented in Sec. 3.

For neither of these systems are we able to find the single-ion contribution to the
quartic terms of the spin-wave hamiltonian and hence the magnon relaxation times are
not calculated. We expect, however, that the conclusions concerning the threshold amplitude
of the r.f. field for parallel pumpings are qualitatively analogous to those for the spin-1
system with the parallel static magnetic field, in the region S, as discussed in Ref, [2].
Systems in the region S are exceptional ones because they can be treated by means of
a rigorous spin representation due to Homma et al. [6], and therefore a thorough analysis
is available.

Systems with an antiferromagnetic-like exchange coupling have to be discussed in
terms of the two sublattice picture which is done in the following paper.

2. Spin waves in the spin-1 system with the magnetic field perpendicular to the uniaxial
anisotropy field

Following Ref. [2] consider the spin-1 system with the uniaxial anisotropy D, along
the z-axis, and the orthorhombic anisotropy E. If the magnetic field is now applied
along the x-axis, the single-ion hamiltonian acquires the following form

Hy = D(S*+ E[(ST)*+(57)* 1% H(S{ +57). 2.1

This hamiltonian has three eigenstates:
Hil1); = 3 {D+E—[(D+E)*+4H*]"%} |1D,, (2.22)
#ii2); = (D—E) |2);, (2.2b)

Hii3d: = 3 {D+E+[(D+E)*+4H?T"?} 3),, (2.20)
where .

1, = \% N [(D+E)*+4H*Y2 4+ D+ E]Y2(03,

1

V2

+ = [(D+Ey* +4H*)' P —(D+E)I*(| + 1)+ = 1)), (2.32)
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i
120; = NG (+ 1= 115, (2.3b)

L ([ + B+ 4HD — D+ )]} [0y,

J2
s

Nz

13> =

+ — [(D+E)*+4HYY2 4 D+ E]2(1+ i+ | = 1)), (2.30)
with
N = [(D+EY+4H? ]

For fields applied along the y-axis E has to be replaced by —E.
None of the single-ion eigenstates has a magnetic moment in the z-direction.
Apart from insignificant changes in the relative positions of the two upper states
there are two patterns of the single-ion levels:
(1) The pattern in which the state |2); constitutes the ground state and the state [3);is
the highest one. This happens for H < HX® = [2E(E—D)]"*if (@) D >0, E>0, E> D,
N

or (b) D <0, E > 0. If the state [] [2);is stable for small oscillations (spin waves) when
i=1

the exchange interaction is introduced, we speak of the system as being in its region S*.

(2) The pattern in which the state |1); is lowest. This happens when (a) £ < 0, or

()D >0,E>0,E< D, any H, or (@)D >0,E>0,E>D, H>H: or (@)D <0,
N

E>0, H> H+©. The domain of parameters H, D, E for which [] [1); remains stable
i=1

to small oscillations of interacting spin system will be referred to as region L*.

Note that in either of the two regions S+ and L+ there can be both paramagnetic
and ferromagnetic systems.

For H directed along the x-axis, the magnetic field induced transitions between the
regions S+ and L+ can occur only for positive E and either if D > 0, E> D or if D < 0.
Similarly, for H directed along the y-axis, transitions can appear only for negative E and
if D >0, |E| >D or if D < 0. The presence of a transverse field makes the sign of E
crucial for the occurrence of phase transitions.

Now we shall set up a spin-wave theory for the system with the magnetic field along
the x-axis by means of the two-bosons matrix-elements matching method. Note that the
operator S; should act on the three states |1);, 125, 13); as follows

STty = #1[2H|D:+(D+E) 13)]

1 ,
+ — N {D+E+[(D+E) +4H?]*}12(2),, (2.4a)

V2
SHi2)y = 713 ./VL{—[((D+E)2+4H2)”2+D+E]”2|1>i

"+ [(D+EY+4HY)? —(D+E)]V*13)), (2.4b)
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SF13% = N2 [(D+E) [1—2H|3),]

1 _ ; N
o N D +E+4H*]">—(D+E)}'?(2),. (2.40)
Similar equations can be written for S;,S%,(S?)2,(S;")?, and (S;)2. The bosonic represen-
tation should reproduce the above matrix elements in any of the two regions S1
and Lt.

A. Region St
Since the |2); state is the lowest one in this region let
125 =6, 03;,
11); = a;'10, 0,
3 = 510, 0, 2.5)

where |0, 0); is the joint vacuum state for the two bosons a; and b;. The single-ion hamil-
tonian becomes then

#; = D—E+% BE—~D—[(D+E)*+4H*]"*}a; a,
+% {(3E—-D+[(D+E)*+4H*1?}b b+ ... (2.6)

Now, as in Ref. [2], we look for combinations of operators q; and b; which imitate
the behaviour of S7, S;, S;, (SH% (S;)?, and (S7)? on the three states. Again the form
of the quartic terms can not be established. For the spin operators we obtain

1
—= N {[(D+E)*+4H*)'* +-D+E]'/?

-5

x(bi++bi“a;aibi—b:a;ai_b;—b;bi—bi+bibi)

Si

+[(D+EY*+4HHY?* —(D + E)]'/*

x(a; +a;—a; bl b~ b ab;—ai ata;—afaa)} + ..., (2.72)

S = — N {[(D+E) +4H%)!* —(D+E)]'/?

1
ﬁ N
x (b —b;+a; ab,—b; a; a;—b} b b;+ b b;b)
+[((D+E)*+4H»'? L D+ E]*?
x(a;—a; +a; b b,—b; ab;+a; af a;—a;f a;a;)}
+ A [(D+E) (a;" b+ b; a)+2H(a; a;~ b )]+ ..., (2.7b)
57 = (SH (2.7¢)
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The above representation allows us to find the exchange part of the magnon hamiltonian.
The third order terms in the single-ion part, #,, cancel out. In terms of the Fourier-
-transformed operators the total hamiltonian acquires then the following form

# = N(D—E)
+ ; af a{t [3E—~D—((D+E)*+4H?)"*]-2Jy(k)}
+ Zk b b L [3E—D+((D+E)*+4H*)"*]—2Jy(k)}
+ N2 ; v(k) [(D+E) (a5 a*y+aa_,—bi bt —bib_))

—4H(b aZ;+ab_ )]+ ... (2.8)
where

Y(k) = Zn.n. e*.

i

The quadratic part of this hamiltonian resembles the harmonic hamiltonian for the region S.
The energies of the two branches of excitations are

e*(k) = 1 {(D+E)*+4H>+(3E—D) [3E— D —8Jy(k)]
+2[(3E—D) (D +E)*+4H?) (3E~D—8Jy(k))]"/*}'"?

= 1 (3E—D+[(D+E)+4H21"2} —273(k) + 0(J). 2.9)
The k = 0 g-magnons go soft at the critical field H5:
HY = HL®O—Jz(3E—D) (H+ ) '+ 0(J%). (2.10)

This marks the upper boundary for the region S*. Slightly above this field the systems
are in the intermediate regions as the [1); and |2); states are mixed by exchange inter-
actions. For fields bigger than HZ® the configuration of the region Lt is reached.
Consider now the possible effects of an oscillatory magnetic field. Note that
the harmonic hamiltonian for the region S becomes diagonalized if we substitute

ay = ¢x—2J9(k) D+ E)N 2 p_cT +4Jy(RHAN L (BE-D) 'd%,+0(J%), (2.11a)

b, = dp+2J9(k) (D+E)N2 podt,+4Jy()HAN 2 BE~D) 'el+0(J%), (2.11b)
L 4

where
ps = {BE—D+[(D+E)*+4H*]*} 1.

Within terms proportional to J2 we identify ¢* and &~ with the energies ¢? and ¢&° of the d
and c-magnons respectively. The r.f. field applied along the z-axis will couple to

Y 5T = (G N[t +2J2(D+E)A2 p ] +0t4JzHA 7, (BE—D) ™'} (dg +do)

+E& NV oi[1-202(D+E)N 2 p ] +vi4JzHA S (BE—D) '} (eg +¢o)s  (2.12)
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whereas if it is applied along the x-axis it will couple to

Y. 87 = 47 Y {(D+E) (df et e d)+2H(e) ¢~ di d)
i k

—Jy(k) (D+E) [(D+E) QE*—2ED—H*) " Ycf d+cid—y)
—4HQBE—D) 'p.(dfd* +dd_) +4HBE-D) 'p_(¢; ¢t i+ e} (2.13)

where
i =[+D+EW T2
The formula for Z S? repeats the one for Z S? in which (dg +d,) is replaced by i(cg ~ co)s

and (cg +¢,) by z(do —d,). Thus if the r.f. ﬁeld is applied along an axis which is perpendicu-
lar to the static field (the x-axis), coherent resonances with the ¢, and d, magnons appear.
For H = 0, the r.f. field in the z-direction produces only d,-magnons, while if it is in the

x-direction — only co-magnons. The incoherent resonance at frequency |e*(k)—e°(k)]
TABLE 1
Possible effects of an oscillatory field on the spin-1 system
Region r.f. field Form of th_e rf. Process Qualifications
along perturbation
SL z di coherent perpendic- if D+E < Othen H+# 0,
(static field ular resonance | otherwise none,
along x) o coherent perpendic- if D+E >O0then H+# 0,
ular resonance otherwise none,
X d;:’ [ incoherent resonance | D # —E,
crdy parallel pumping of | J# 0, D# —E,
unlike magnons
cicty, difdty paraltel pumping of | J# 0, H#0, D# —FE.
like magnons
Lt | z co coherent perpendic- if D+E >0then H# O,
(static field | ular resonance otherwise none,
along x) diter incoherent resonance | if D+E<O0 then H# 0,
| otherwise none,
diiet “parallel” pumping J#0,D#% —E,if
of unlike magnons D+E < 0 then H# 0,
x dy coherent parallel D# —E,
resonance
ctict, diwdit parallel pumping of | J# 0, H# 0,D #—E.
. like magnons

is possible for the r.f. field parallel to the static one. Also then, but at frequencies
£°(k) +&%(—k), e°(k)+&°(—k), and &%(k)+ ¢(— k) respectively, the three pumping processes
are seen to emerge. Unlike the situation for the region S these processes do not vanish for
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purely uniaxial systems, i.e. for E = 0. Hence the pumping here is allowed as a result
of an interplay of the Zeeman and exchange fields. The possible effects of an oscillatory
field are summarized in Table I.

B. Region Lt
In this region we put
11> =10, 0>y,
12>; = a;'10, 0);,
3> = b;'10, 0D, (2.14)

so the single-ion hamiltonian becomes
#; =% (D+E)—1 [(D+E)* +4H*]/*
+1{D-3E+[(D+E)*+4H*]"*}a;] a;+[(D+E)* +4H*'?b by+ ... (2.15)

Now the spin operators are represented by

Si = N LD +EP+4HY (D1 )]

V2
x(a; +a,—a; b b;—b; a;b;—a; a] a;—a; a,a)
+[((D+E)* +4HY? + D+ E]Y*(a b+ b a)+ ..., (2.163)
S = 2HN3(1~2b/b;—a; a;)
+(D+E)N 5 {b +b;—b; a; a;—a; a;b;—b; b;’ b;—Db; b}

. N
3 NG N {[(D+E)*+4H*)* + D+ E}' (0] —a;+a] a,0,~a]" a; a)
+[((D+E)*+4H*»'? —(D +E)]'*(bf a;—ai b} + ..., (2.16b)
S7 = (SHL. (2.16¢)
The total hamiltonian then acquires the form
#H = N{&(D+E)—1 [(D+E)y*+4H** ~42JH* /% }
~N'?4J2(D+ E)HA (bg +bo)

+¥ [ (K)ag ap+I(D+E)N T y(k) (a7 ap+aa_p)]
k
+; [B, (k)b b—J(D+EY* 4 y(k) (b b+ bb_ )]

+4JHA 2 NT2 N {—y(ky) (Bf, +1%, 8, + Bty 05y By 55)

kik2

+ -/Vzl(D +E) [z+7y(ky)] (blj;al:;akl kT al:: k%, Dry)
+ N2 (D+E) [z+2y(k )] (b, b bry 41, + bis ek Prabr)} + s (2.17)
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which reminds one of the structure of the hamiltonian for the region L [2]. In Eq. (2.17)
o (k) = 3 {D—3E+[(D+E)*+4H*]"*} + 8JzH* /4 —2Jy(k),
B (k) = [(D+E)*+4H*V? - 2] ¥4 [(D+ EY*y(k)— 8Hz].
The linear term (bg +b,) can be eliminated by means of the unitary transformation
by = Bi+0,,oN?4Jz(D+E)HAN S +0(J?). (2.18)

This transformation brings in some unknown, proportional to J, cubic terms and also
new linear and quadratic terms, which are proportional to J", with n > 2. Therefore in
the harmonic approximation

H = N{F (D+E)—% [(D+E)*+4H*]"*—4JzH* 4%}
+X [ (Kyag ay+I(D+E)N 2 y(k) (af aXy+aa_ )]
k

+§ [% (OB Be—I(D+EY N 1y(k) (B BLit BB -]+ 00D+ ..., (2.19)

and the energies of the spin-wave excitations are
g'(k) ~ [} (k)—4T*(D+EY N4 y* (k)]
= 3D —3E+[(D+E)* +4H*]V?| + 2J[4N"% H?z —y(K)]+O(J?), (2.20)
(k) = {(D+E)*+4H?> - 4J 42 [(D+E)*y(k) — 8H?z]
+64J° N5 H?z[4H?z — (D + E)*y(k)]}/?
= [(D+E)*+4H?]'? - 2J /4 [(D + E)*y(k)—8H?*2] + O(J?). (2.21)
IfD>0,E>0,E>Dorif D<0, E>0, ¢%0) vanishes at
H3 = HY®+Jz(3E—D) (D+ E)Y*[HL (D +9E*—6ED)] ™' + 0(J?). (2.22)

Thus the width of the intermediate region, Hj— Hg, is again proportional to J.

Note that for very large magnetic fields one should obtain a more straightforward
description of the system in the region L by choosing the quantization axis parallel to
the applied field.

Finally, for all possible combinations of E and D values, the energies (2.9), (2.20),
and (2.21) coincide, in the limit of H = 0, with the appropriate energies calculated for
the regions S and L [2], except that the term proportional to J2 in one of the energies (¢%),
characteristic for the region L, is not reproduced.

Now, the harmonic hamiltonian for the region £+ becomes diagonal under the trans-
formation

ay = ¢,—2Jy(k)A 3 (D+E) {D—3E+[(D+E)*+4H?]'} " 1ct, 4 0(J?),
B = dy+Jy(k) (D+E)’ NS d%,+ 0. (2.23)
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It turns out that the set of possible r.f. field-induced phenomena, as summarized in Table I,
is similar to that for the region L, except the pumpings by the r.f. field parallel to the static
field do not vanish in the limit of E = 0.

3. Spin waves in systems with cubic anisotropy

Our method of spin operators construction can also be applied to weak-exchange
-systems with other anisotropy fields. Here we shall discuss the case of purely cubic anisot-
ropy, when the single-ion hamiltonian reads

H, = A[SD*+(SH* +(SD*1-HS]
= 3 ALY+ (ST +(SHYASTY +(ST)*(S))?
+(SF ST +S7 S ]+ ASH* —HS. (3.1)
if this is a spin 2 system, the single-ion hamiltonian has the five following eigenstates:
A+ = [21A+ (947 +4H) T |+,
H#/|0); = 244]0),
Hi|—1>; = (184+H) |- 1),
=D = [214—9A* +4H?)' ] |-,
Hi|+1); = (184—H) |[+1);, (3.2)
where

[+ = \/% N[OA? +4HD)H? 4+ 2H|Y2| 2 2%+ [(94% +4HD 2 —2H] 2| +2) .},

1
|=>: = NG N[O +4H2) 2 1 2H] 2| 42, —yf [(9A> +4H?)'? —2H]' 2| 2>}, (3.3)
and

N = (942 +-4HP) ™A,

,_[+1 4320
=1-1 4<o.

There are two possible structures of the single-ion ground state:

(1) For positive 4 and for 0 < H < H{® = 24, the lowest energy state is |+ 1), and
the next states are in the sequence |— >, | — 1>y 10D, |+ 1);. If the product of states [+1>;
is an approximate ground state of the system, we shall speak of region §’.

(2) For positive 4 and H > H\® and for negative 4, H >0, |—); is the ground state
and other states can switch their relative positions under the influence of the Zeeman
field. When the ground state of the system is composed of the states |—>; we refer to
region L'. Again, if 4 is positive, regions S’ and L’ are separated by an intermediate region
of width proportional to J.
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A. Region §’
Consider first region S’. Let

|+1; =10, 0,0, 0,

|=> = a/"10,0,0,0,

[—1; = b0, 0,0, 0},

05 = ¢"[0,0,0,0,

[+>: = d;'10, 0,0, 0D, (34

where a;, b;, ¢;, d; are four sets of Bose operators and |0, 0, 0, 0>, is the joint vacuum
state. The matrix-elements matching method yields

Sf = 1+[(N")V4H —1]a) a,~2b] b;~c]' ¢;
—[")Y4H + 1] di+6A(N ) (a] di+ d] ay), (3.52)
S = 2 4 [(94% +4H?)' 2 +2H]'?

+ + + + +14 + .+ + g+
x(a; +bidi—a; a; a;—a; b; b—a; ¢; c;—a; d; dy)

+2 0 N [(9A +4H?)? —2H]?
X(di+_bi+ai_di+ai+ai_di+b;bi*d;-c;_ci_d;d;_di)
+/6 (ci+ ¢ by—ai ae;— b} biey— ¢ cie;~df die) + .., (3.5¢)
87 =(SHt. - (3.50)
With the use of Egs. (3.5) we arrive at the following hamiltonian for the system
H# = N(184—H—2Jz)

+Y (efay ap+ebby by+efcy e+ eldit dy)
k .
=27 Y {3 #[OA% +4H?) 2 + 2H] (k) (az ¢Xi+ ane )
k

+/3 N [(OA® +4HHY2 —2HT Py(k) (dff ¢+ dye_y)
+(N"V26A(ay d+df a)} + ..., (3.6)

where
& = 3A+H— (94> +4H*)'? = 2] (z[(N"Y4H — 1]+ (N [(9A* + 4HD)'* + 2HTy(K)},

& = 2H+4Jz,
& = 64+ H—2J[3y(k)—z],
g = 3A+H+9A> +4H?)'? 27 { — z[(N")4H + 1]+ (V") [(94% + 4HH? —2Hy(k)}.
3.7
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The energies &, &, &1 are the magnon energies, if terms quadratic with respect to J are
neglected. The energy &, is exact. The energy &} vanishes at

H,, = 24—8Jz+0(J?). (3.8)

Beyond this field the system is no longer in the region S’.

Note that at H = 0 (with 4 > 0) the a-magnons are soft regardless of the magnitude
of J, and then our theory does not work. This reflects the degeneracy of the single-ion
ground state: it is a mixture of the states |—1);, |+1);, and |— ;. Therefore, the system
is then in an intermediate phase. Since the degenerate single-ion ground state becomes
magnetic under the influence of exchange interactions, this intermediate phase is ferro-
magnetically ordered. For s > 2, however, the matrix-elements matching theory will apply
even in this limit. For example, in the s = 4 cubic system analyzed by Grover [5], the
ground state is a singlet at H = 0, and for small enough J’s such systems are paramagnetic.

The hamiltonian (3.6) becomes diagonal under the transformation

a, = e+ JY(k)my f_y+6J2(N)VABA+H) ' g+ 0%,
b, = b,
e = fitJy(mel + o),
d, = g+ Jy(Kymyfr+6J2(N )V ABA+H) e+ 0(J?), (3.9)

with
my = 2./3 N'[(9A%+4H?)'? + 2H] *[94+2H — (94% +4H)'*] 71,
my = 2./3 N'[(94% +4H?) 2 —2H]*[34+ H+(94% +4H?)'*]71.

Operators e, f;, g satisfy boson commutation relations with an error which is propor-
tional to (J/A4)?. Equations (3.9) allow us to find that ) S} contains the following terms:
7 p

(1) & e by by fi' fro 8 81
(2) (ex gt 22 @),

3) (fRver +eaf-n)

@) (g f It guf-1)-

The last two terms are proportional to J. Term (2) corresponds to an incoherent resonance
[7] which occurs at the frequency

i —ef = 2(94%+4H?)2 1 8TH(AN")[2z + (k)] +0(U?). (3.10)

Terms (3) and (4) correspond to pumping. In both these processes /~magnons are pumped.
None of the effects contributes to the production of b’s.
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On the other hand ) S7 involves

(5) (eq +eo), (fo" +fo). (g0 +80),
ONCHAERN S
(D) (by e+ b)),
(8) (S bet b f),
) (¢ g+ g by,
(10) (b e +e7 by).

Terms (f§ +/5), (6), and (7) are proportional to J. Now b, f, and e-magnons can be pumped,
if appropriate conditions for frequencies are met. There are also two strong coherent
resonances at frequency o = & and at w = &%, and a weak one at » = 9. Finally three
incoherent resonances are possible, namely at frequencies w = ef—e?, ef—g, el —zf. All
of these incoherent resonances involve b-magnons. We shall not discuss the above men-
tioned processes in greater detail, as we cannot establish the form of the quartic terms
in the hamiltonian,

B. Region L’
In this region we put
=2 =10,0,0,0,
[+1>; = a;'|0,0,0, 0>,
|=1); = b;10, 0, 0, 0),,
0>; = ¢;10,0, 0, 0}, :
' [+ = di'10,0,0,0), (3.11)
and find
S; = 4H(NV"'Y’ (1~ ¢ ¢;~2d] d)+[1—4H(N")*]a; a,
~[1+4H(N")?]b] b+ 6 AN "YHd} +d;—d; a; a;
~a; aid;—d;" b by~ b} bid,—d ¢} e;—cfed)+ ..., (3.122)
S = 2 N [(9A4% +4H?)M? 4 2H]Y?
x(a;+b;" d;—ai a;a;— b bja;— ¢ c;a;— dif dyay)
+/2 1 H'[(94° +4H?)' 2 — 211/
x(=b; +di a;+b;"a; a;+b; b} b+ b} e} e, + b} dy)
| +6Y%af et citb)+ .., (3.12b)
S = (SHL (3.12¢)
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In the harmonic approximation the hamiltonian becomes
# = N[21A—(9A> +4HH? —16JzH*(N")*]
— 48T AHZ(N Y NY2(dg +d)

+ + S+ +
+Y (&ta; ap+elby b+ eler e, +eldy dy)
k

+6AT(NY Y y(k) (ag b+ apb )+ ..o, (3.13)
k

where.
gt = (94> +4HH*FH-34

—2J(NY{y(k) [(OA +4H?)2 £ 2H ]+ 4HZ[1 F4H(A )]}, (3.14a)
el/cc s (9A2+4H2)1,/2+3A+32JH2(W’)4Z, (3.14b)
g = 2(9A% +4HYY? +64THH (A ") 2. (3.14c)

The linear term in (3.13) is eliminated by applying the transformation:
dp = dj+ 0, o] NY24AHZ(N)® + O(J?). (3.15)

The energies (3.14) correspond to the four branches of spin-wave excitations, except that
¢ and e do not include corrections proportional to J2.
When A is positive the energy & vanishes at

=24+ Jz (3.16)

and this determines the lower boundary of the region L'.

With negative 4 the k = 0 c-magnons become soft when H vanishes. The theory
does not apply to the H = 0 situation since then the single-ion ground state is degenerate:
the states |0); and |—); correspond to the same energy eigenvalue of —24[4|. At H =0
such systems are in an intermediate phase with no magnetic moment along the cubic edges.
Again, higher spin values may yield either a paramagnetic or ferromagnetic configuration,
depending on the strength of J.

The hamiltonian (3.13) is already diagonal with respect to ¢’s and d’s. It is completely
diagonalized by the transformation

a, = a—3JyR) AN [OA> +4HY 2 —34]7 b7,
by = by—3Jy(K)A(N " [(94* +4H?)* —34] 'a’ (3.17)

On the basis of Egs. (3.17) and (3.12) we conclude that an r.f. field in the z-direction can
produce pumping of pairs a,* b;* and a coherent resonance at » = . An r.f. field applied
in the x-direction should give coherent resonances at @ =gy and @ = gy, incoherent
resonances at @ = e—sg? and o = ¢ —e}, and finally.it should produce pumping of

pairs d b," and d% a,t. The rate of these pumpings should be enhanced by the
presence of the corresponding virtual processes [2].

The author thanks Professor F. Keffer for discussions and comments.
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