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The exact result for the static spin susceptibility of the phase B of superfluid *He at
nonzero temperatures is obtained. The agreement of the result in microscopic and phenom-
enological approaches is shown.

1. Introduction

An incessant development of experiments on superfluid *He and permanent improve-
ment of the measurement technique [1-3] induced the authors of this paper to the complete
investigation of the static spin susceptibility of the phase B of superfluid He [4]. This
problem seems to be well known. The exact result for the static spin susceptibility for
T = 0 has been already derived in 1967 by Czerwonko [5]. The generalization of this
formula for nonzero -temperatures has been performed by Leggett [6] in 1975, but with
restriction to only zeroth Landau’s parameter. In 1976 Wélfle [7] tried to give more
general formula with two even Landau’s parameters. It seems that the obtained result
solves this problem completely, because the static spin susceptibility of superfluid
*He-B contains only zeroth and second Landau’s parameter (see below or Ref. [6]).
Nevertheless, the result obtained by Wolfle [7] was not correct, (it is correct ounly for
s-pairing!). This is easy to verify by comparison with the well known Czerwonko formula [5].
The analysis of the method used by Wolfle [7] allows one to state that the author [7] made
some misleading intuitive assumptions. Namely, he assumed that distribution spin matrix
has a diagonal form. This simplification is not correct, because the off-diagonal elements
play a significant role (see below).

In this paper we consider the linear response of the superfluid system with BW pairing
[4] to the static and slightly unhomogeneous magnetic field. Our purpose is to obtain
the tensor of the spin susceptibility y;;, without any restrictions imposed on the Fermi
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liquid interactions (i.e. the ordinary Landau function). On the other hand, we assume
that the effective quasiparticle interaction in the particle-particle channel is spin-sym-
metric. Two possible approaches to such formulated subject will be presented below.

2. Microscopic approach

We apply the theory developed by Czerwonko [5] being a continuation of the Larkin—
Migdal theory [8]. The approach of [5] was confined to 7" = 0 but, without significant
difficulties, could be extended to nonzero temperatures. Namely, equations (2.27) of [5]
remain still valid, but now the kernels L, M, N, O (cf. [5]) have slightly different form,
obtained firstly by Leggett [9].

Qur notation is almost identical to that used in [5] partiCulérly in Egs. (2.27). Let
us list its main symbols. We denote: o- — the Pauli matrlces ' — the unit vectors directed
along the j-th axis in the momentum space, k, g — the unit Vectors parallel to the momen-
tum & and the wave vector g of the external magnetic field, respectively, 4 — the energy
gap, <.. )—the average over spherlcal angles connected with k, v—the density of
states on the Fermi surface.

The normal vertex function can be written as follows:

I(k) = ”"”k)a e,
m =17 +TH(-R)], ) @
whereas the anomalous vertex functlon "as ‘
(k) # 'cj-(l%)aié o
(k) = —2(=k). )

The exchange part of dimensionless effective 1nteract10n in the partlcle -hole channel
i. e. the exchanges Landau function, is written as

B(kk') = §(2i+1)b11?,(1212'), " B= %[3(1212')%3(;;21;')]1 o ®

According to the results obtained by Leggett [9] for static fields (0 = 0) and qv <A
where v is the velocity on the Fermi sphere, we have

L-0= -1, 2x0=1-%,

é (N & AR
T 2T
0 .
is the Yosida function, having the following properties:

HO<Y <L, (@) YT =0 =0, (i)¥T=T)=1"1

Moreover, it is sufficient to know that for @ = 0 M is an odd function of k.

L 4)

where: -
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- Taking into account the above formulae, we obtain from Eqgs. (2.27) of [5], that

T = aby+<{B{~T i+ (1-V)Thkk}>, ®)

whereas expression (3.31) of [5] now has the form:

Aij = av_l,uﬁv{<fj~ —(1- Y)<9~1;'Qki<\;>} (6

Such important simplification of the equations is caused by the fact that averages
¢...> of odd functions with respect to k vanish. Eqs (5) and (6) are sufficient to determine
xij- For this purpose, it is necessary to average Eq. (5) and Eq. (5) multiplied by ki k.
The obtained system of two equations can be easily solved and, using (6), we obtain:

:qu[s (1+b,Y)+5 Y(1+by)]

Vi = —— . 7
T 2 (Wtbo) (L4b,Y) 43 (1 +5oY) (1+b;) @
3. Kinetic equation approach
The kinetic equation has the following form ([10, 11]): i
won,, = ()'nks,?+q/2—sg_q/zénk+n,?_q/258k—55ki1,?+q,2. 8)

For matrices dn, and d¢,, we use the standard notation (cf. [11])

< (on, én, (M4t
em (B ), sun (M) X

We perform our calculations in the static limit, therefore, for the spin matrix dn. the
following equation is valid:

1 . .
on, = —(én A" —A*on,+2 L E5A4T
ny 2C< n ' Eé

3

——(A M_,+M"4 )+3_di< )(A*M _—M"A )) (10)

where “tr’” denotes the transposed matrix in the spin space. In this notation we have:

k2 2 22 12 ‘ ﬁ k
S H Ei = GHlAi", o= —31tg h— » €8y

Ay

k

Taking into account equations for on. and Sn— (5n_ = Snl, where + denotes the hermi-
tian conjugation), we obtain from (8) in the static limit, the relation:

_i ¢ w 1od + tr( 412 d (¢ a4 4t
5ne-—d§<Eﬁ>M 2% d€< >(A M _ kA —M"[4]")+ —-g—(—)(éA A+4764), (12)

where M, denotes

M; = (; faonoi)a® +(§ fioOnep ~ upH)3. (13)
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f° and f* are the spin symmetric and antisymmetric parts of the Landau kernel, respec-
tively, v = B(k- £ (cf. (3)), v is the density of states on the Fermi surface. H is the
external magnetic field.

Each spin matrix w can be expressed in the form

w = wle® +we" (14)
and, using (14) the following simple relation can be formulated,
ATweA = —2d(d* - w)d" +|4|*wé", 15)
where
4 = i(G - di)o,.
Hence, for the magnetization m = % Updny, the following equation will be obtained:
m; = —bom;+pup[v+3 w(¥ —1D1H;
3 (bo=bs) (¥ = my— (¥ — )by 3, ikonc e (16)

where Y is the Yosida function. The last term in (16) has to be derived independently.
After some calculations we find

z : . —1(by—b,)Ym;+L uivYH,
LEent .. = - 3 0 2 iT3MB l. 17
Hs itvj ne,k l+b2Y ( )

5
Using the definition of the susceptibility tensor
m; = xi;H;, (18)

and taking into account equations (17) and (16), we obtain the result (7).

4. Conclusions

It is easy to see that (7) is positive for i = j, as a result of Pomeranchuk inequalities
[12] and the property (i) of the Yosida function. Now for T = 0 (7) passes into the expres-
sion given by [5], whereas at T = T, we obtain the formula for susceptibility of the
normal system. The same result as for T'= T, is obtained fw=0and u>qu> 4;
cf. Landau [13] and Larkin [14].

The approaches presented in this paper can be, of course, applied to the other systems.
For the system with s-pairing they are much simpler and then obtained formula is the
same as Leggett’s [9] one from 1965. '

It has been stated, during the Karpacz School of Theoretical Physics, 1977, that
Professor J. W. Serene participating in this School obtained formula (7) in an independent
way.

The authors are greatly indebted to Professor J. Czerwonko for suggesting the
theme as well as for helpful and valuable discussions.
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