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GROUND STATE ENERGY OF A SPIN POLARIZED HARD CORE
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The energy per particle, E/N, of the ground state of a spin polarized system of hard
core spin 1/2 fermions is expanded in powers of x = krc (kg = Fermi momentum, ¢ = hard
core radius), with the result: E/N = (#2k%/2M) {3/5+(2/5 ) x*—(18/175 %) x5 +0.01803 x°
+(2728/70875 ) x7~0.01101 x8 + ...}

1. Introduction

The expansion of the ground state energy E of an infinite system of fermions inter-
acting with a hard core potential, in powers of the gas parameter x = kpc (¢ = hard
core radius, kyr = Fermi momentum in units of h) has been investigated for a long time
by several authors [1-15]. In general, a single particle state of a given momentum % may
be occupied by v particles, where v is the number of spin and isospin degrees of freedom
per particle. E. g., v = 4 for nuclear matter, v = 2 for neutron matter, an electron gas
or liquid *He, v = 1 for a spin polarized neutron gas or electron gas or liquid 3He.
Usually, the expansion of E is presented for the case of a general value of v. The x3-approxi-
mation of this general expansion (i. e., including terms ~ x°) is well established. It appears
that beyond the x3-approximation, problems arise with logarithmic terms (~ x*In x)
[8, 9, 12-14].

In the present paper, we consider the special case of » = 1. In this particular case
it is easy to calculate all coefficients of the expansion in the x®-approximation, and this
is done in this paper. In the case of v = 1 (e. g., totally spin polarized neutron matter),
all particles have spins with the same z-component (e. g., they all are spin-up particles),
and their mutual interaction takes place only in states with odd relative angular momenta /.
Now, the contribution to E of the interaction in the P state (/ = 1) is at least ~ x3, and
the contribution of three-body diagrams to E is at least ~ x°. Consequently, even if we

* Address: Instytut Badand Jadrowych, Hoza 69, 00-681 Warszawa, Poland.
(403)



404

restrict ourselves in the calculation of the interaction energy to the phase shift approxi-
mation, 4,F, and to the lowest order Pauli principle correction, A'E (it accounts for the
effect of the Fermi sea on the two-body interaction), we get the exact energy within the
x8-approximation. This means that the x8-approximation for v = 1 is, in principle, as
simple as the x2-approximation for v = 2, 4 (where the S state interaction gives a con-
tribution to FE, linear in x).

The results of the present paper apply to any hard core system of spin 1/2 fermions
in the state of complete spin polarization (the ferromagnetic state). In particular, the model
of hard core interaction has been used in discussing the possibility that neutron matter
becomes ferromagnetic at a density, comparable to neutron star densities ([16, 17], and
references therein). Also in the theory of the magnetism of metals, the hard core interaction
model has been in use for a long time (for a review, see [18D).

Recently, the hard core fermion system has been used as a testing ground for various
Jastrow type approximations [19], and the availability of our x®-approximation in the
very simple v = 1 case should be useful here. Actually, the need for the present work arose
‘when discrepancies between variational results and the x®-approximation were noticed
in the case of v = 1 [17, 20].

We do not know any satisfactory estimate of the convergence radius of the energy
expansion in powers of x. The whole expansion must blow up when the density approach-
es the close-packed limit g., = 21/2¢-3 (for the fcc or hep lattice), i. e., for x = Xo < X,
= 212(3p2p)l/3 = 4.375/v'/3. The knowledge of the x®-approximation might be helpful
in bridging the gap between the low density limit (where the expansion in powers of x
should work), and the high density limit where an asymptotic form ~ (x—x,)~> has been
sdggeéted for the energy of a hard core gas [21]. _

The present paper is organized as follows. In Section 2, we derive the approximate
expresion for the interaction energy, which contains the phase shift approximation 4,E,
and the Pauli principle correction 4’E. In Section 3, we expand 4,E and A'E in powers
of x and calculate all the coefficients of the xS-approximation. Appendix A contains
formulas for integrals over momenta of two particles in the Fermi sea. In Appendix B,
expressions for elements of the free reaction matrix #° are derived, and expanded in
powers of x. Appendix C contains a list of integrals which appear in expressions for A'E.

The results of the present paper have been reported in [27].

2. General expression for E

We start with the unperturbed ground state of N spin-up fermions in a periodicity
box. of volume Q. We have

kd = 6no, 2.1
where ¢ = N/Q is the density. The unperturbed (kinetic) energy is
Eo/N = (3[5)¢r, 2.2)

where e = h2k2[2M is the Fermi energy.



405

We express the contribution of hard core interaction to the énérgy, AE = E—E,,
in terms of the Brueckner reaction matrix &,

<kg

AE = (12) Y. (p1p2—p2pi1 K 1P1P2)+ ..., (2.3)

p1p2

where states denoted by | p) are plane waves normalized in volume Q.
Let us introduce the relative, and center-of-mass momenta:

k=(k—k)2, K=ki+k,, p=(p—p:)2, P=pitp,, 2.4
(kb)) A\ p1p2) = Ogp(K|H p|p) = Sxp[(2m)*[Q] <k p| P, (2.5)

where | p) = 2r)-3/2 | p).

Expression (2.3) for AE may be written in the form (with the help of relation (2.1)):

AE[N = (3/8nkz) fk dpy fk dp,[{p|H plp)> —{~pIHplP>]+ ... (2.6)

We use the reaction matrix &', with pure kinetic single particle energies in the inter-
mediate states. It is defined by the equation:

2 i QB K)o

k| plp> = <kivlp) +(MIh7) | dk'{kivik" o kA plp), 2.7)

where v is the hard core two-body interaction, and Q the exclusion principle operator:

1 for |1 P+k| > kg,

0 otherwise. @ad

Q(P B k) = {
Next nonvanishing terms, denoted by dots in Eq. (2.6), which contribute to AE, are
of the third order in . Strictly speaking, the higher order terms involve off-energy-shell
elements of the % matrix, whereas Eq. (2.7) defines on-energy-shell (and half-off-energy-
-shell) elements, the only ones we shall actually need in our calculation.
To solve Eq. (2.7), we consider the free space reaction matrix 4™, defined by the
equation:
0 g M ’ ’ 1 ’ o}

Skl (2) |py = <klvip> + 7 | K <Kok’ e KA (z) 1Py, (2.9)
where the principal value of the integral over &’ is taken. (The principle value of all singular
integrals occurring in this paper will be taken). Since we will need half-off-energy shell
elements of 2, we indicate explicitly the dependence of #™° on the energy variable z.

Obviously, #° does not depend on the center-of-mass momentum.
From Eq. (2.9) and (2.7), we obtain

QP k)—1
p2 —7c72_

M
k1A plp> = <KkIA(p) [P+ W jdk'<kl% (p) 1K) CK'| A plP>. (2.10)

By solving Eq. (2.10) by iteration, we get
Ck|A plp)y = <kl (p) P>+ kA DY+ .. (2.11)



406
where

oP, k)—1

| agrt ! - ]_M_ x w0 ./ ’ 0
kA plp) = 37 Jdk Ck|A(p) Ik>—~p2—_%,2— <K' A(p) 1P (2.12)

Substituting the iteration series for &, Eq. (2.11), into expression (2.6) for AE, we get
AE = AGE+A'E+ .., (2.13)

where

kr
AoE[N = 16n OI dpp*g(p/k) [<P1# (D) |P) = {—p|#*(p) |PY], (2.14)
where the function g is defined in Eq. (A.6), and

A'E[N = (3(87kz) <§k dpy <§k dp,[<p|H plp> —{—p|Hp|P>]. (2.15)

The terms indicated by dots in Eq. (2.13) are those resulting from higher iterations
of Eq. (2.10) for ¢, as well as terms of third and higher orders in 2" in Eq. (2.6).
If we introduce the partial wave expansion,

kA (@) py = @m)~° ; @1+ (k, p; )P (pk), (2.16)
we may write expression (2.14) in the form
ky
AGE[N = (4/n”) Zlo (2I+1) g dpp’g(p/k) A1 (p, P; D), (2.17)

where Z" indicates summations over odd values of /.
1

A partial wave expansion for #'p is' complicated by the presence in Eq. (2.12) of the
operator Q which we expand in Legendre polynomials [22],

OP, k) = ;" Q.(P, k)P (Pk), (2.18)

where )¢ indicates summation over even values of L,
L

Jl for k > % P+kg,

04(P, k) = 17 for 1 P+ke > k > VIkE—P*4, (2.19)
IO otherwise,
0L(P. k) = {PL+1<v)7PL_1(v) for $ P4ke > k> VKE=P4, )0
(L£0) 0 otherwise,
where
y = y(P, k) = (K*+% P*—kp)/kP. (2.21)

1 We thank Dr P. Haensel for calling our attention to Ref. [22].
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If we insert expansions (2.16) and (2.18) into Eq. (2.12) for {+p|AH p|p), we get

CEPIAHIPY = @m) ™ X (2 QI+ DA (P, p), (222)

where
HUP, p) = X Ai1(P, )PL(PP), (2.23)

where

) M dkk? Qu(P, k)—1
HiolPop) = gz dn | o = a i Ak D), (224)

M dkk* Q,(P, k)
AL (Pop) = — E ILOO[I0Y4r | —— =222 o9k, p)a K, p). 2.25
%:1{’:0() P) hz - ( l ) ﬂf (27‘[)3 pz_kz l( P) l( p) ( )

In the last two equations, we apply the notation
H ik, p) = A7k, p; p) = AL (p, k3 ), (2.26)

in which the symmetry property of 2#° is used. The definition of Q1(P, k) implies finite
limits for the k-integrals in Eqs (2.24) and (2.25). The upper limit is P/2+ky in both equa-
tions. The lower limit in Eq. (2.25) and in the Q, part of Eq. (2.24) is (k2—P2/4)Y12 and
in the —1 part of Eq. (2.24) is zero.

With the help of Egs (2.22), (2.23), we may write expression (2.15) in the form (see
Appendix A):

AEIN = (25°08) 5° GI4+1) | dpp® ] PP (0ot io(2, p)
i 0
+ Lgo QL+1)7'[Ppy ((0)—Ppoy ()] (P, D)}, 2.27)

where the function « = a(P, p) is defined in Eq. (A4).
Expressions for o (k, p) are given in Appendix B.

3. The x®-approximation

The expansion of 2 ")(k, p) in powers of x = kgc starts with the leading term ~ x2*!
(see Eq. (B.12)). For the lowest partial wave, the P wave (I = 1), we have #(k, p) ~ x3
+0O(x®). This means (see Eq. (2.11)) that also the expansion of X 'p in powers of x
starts with x>, Consequently, the contribution of third (and higher) order terms in #p
is at least ~ x°. We conclude then that it is sufficient to keep in Eq. (2.6) terms linear
in A'p, if we,want to calculate in the expansion of E terms of lower order than x°.

Similarly, in our iterative procedure of determining o/p in terms of °°, Eq. (2.11),
we may stop at A'p, if we want to calculate in E terms of lower order than x°. Namely,
the next iteration (beyond ') is of third order in #°°, and. thus would lead to terms at
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least ‘~ x°. Furthermore, it is sufficient to consider only- P wave contribution to #’ P
Namely, for the next partial wave, the F wave (I = 3), we have #'3(k, p) ~ x7+0(x°).

Now, looking at Eq. (2.25), we see that the lowest power of x, in which the F wave par-
ticipates, arises by combining in Eq. (2.25) P and F waves ({=1,1"= 3 or 1=31=1).,
This, however, would lead to terms ~ x**7 in A'p. ";
. On the other hand, we have to include the F wave in calculating 4,E in the x8-approxi-
mation, as it leads to a contribution ~x'.
First, we calculate 4,E. With the help of Eq. (B.8), we may write expression (2.17)
for 44E in the form:

1
(4oE[N)[ep = —(32[m) Zl';o @I+ 1)0§ dppg(p) tg (D) (3.1

where p = p/k‘F". After substituting for tg &,(p) the expressions given in Eq. (B.13), and
performing the simple integrations over p, we get

(4oE[N)fex = (2/5m)x° —(18/175m)x" + {(4/1057) + [28/708757]}x” +0(x%)
— 0.127324x° —0.032740x° + {0.012126 + [0.000126]}x” + O(x°), (3.2)

where all terms dre due to the P state interaction, except for the very small term in the
square brackets, which is due to the F state interaction. The total coefficient at x7 is
{2728/70875 n} = 0.012252. ,

To calculate A'E in the xs-approximation, we consider only the / = 1 term in Eq. (2.27),
and only the // = 1 term in Eq. (2.25), in which then the only possible value of L is 2.
Consequently, we have '

" AE|N = [A'E[N]p—o+[4'E[N]p=2+0("), (33)
where
ke ]
[A'E[N] =0 = 0/27%k3) | dpp® | dPP*aA’ o, (3.4
[A'E[N]L=> = (9/4n2k%) ?r dpp2 j dPP?u(a* — 1) 1,20 (3.5) ‘

When we insert for '.}f 1,1, €xpressions (2.25), (2.26), and apply notation (B.10) we get

1
[ BN YexTims = (212 | a75° jdﬁﬁzoz J ate PO B 69

o
1
(BN rles = 152 [ a5 [apprae - [aee BT M 7, 6D
0

where B = Plkg, £ = klkg, & = &(P, p) = a(P, p)-and §.(P, k) = Qu(P, K):
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If we substitute for k%(k, p)* the expression given in Eq. (B. 14), we get both for
L=0and L=2:

LAE[N)/ee]L = Xs,LxG‘i'Xs,LxS'I'O(xlO), (3.8)

where
0 o
e 2 ~~4 552~ ) Lo(P, D) for L =0,
Xer=(8/n )(j;dpp [ aPP’a {% @15, 5) for L =2, (3.9
. , 2 ~ny o nsn [I(P, D) for L =0,

Xgp = —(6/5)X5,.+(8/57%) | dpp { dPP*a {% —DIP.5) for L =2, (3.10)
where

Io(P, p) = | dik*(@o—D/(p*>—K?), (3.11)

I(P, p) = [ dkk*Q,/(p* — k), (3.12)

Iy(P, p) = { dkk*(0,—1), (3.13)

Iy(P, p) = [ dkk*Q,. (3.14)

Formulas for /; and I}, are given in Appendix C. The expressions for Xg ; are the same
as those for X ;, with the only difference that p* should be replaced by p°.

- :Although the integrals over p and P can be performed analytically, we chose the
much easier and safer way of numerical integration. We have applied an improved Gauss—
~Kronrod method [23, 24] with an expected relative error < 10-°, Our results are:

Xe,0 = 0.020573, X, = —0.002544,

Xgo0 = —0.012944, X, , = 0.001933. (3.15)

Notice that if we neglected Q,, i. e., approximated Q by its angle average Q,, then
Xe,» and X, would vanish. Our results (3.15) show that the approximation Q = Q,
would introduce an error of about 10% in calculating X and X.

. Let us collect Eqs (3.15), (3.2), and (2.2), and write our final result:

*

(E/N)[ey = i X, x"+0(x°), (3.16)
n=0 0

Xo=06, X;=X,=X,=0, X,=2/51=0.12732,

X5 = —18/175n = —0.03274, X, = 0.01803,

X, = 2728/70875% = 0.012225, X5 = —0.01101. 3.17)
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APPENDIX A
Formulas for integrals

Let us consider functions F(P,p,0), G(P,p), and H(p), where P = p,-+p,,
p = (p,—p2)/2, and 6 is the angle between P and p. We have:

ky 2(kr—p) 1
¢ dcos 0
J dp, J dp,F(P, p, 0) = (47" f dppz{ f dPP? f =
<kp <k 1] 0 -1
2ViZ—p2 x
dcos 0
s j dPP? f c;’s }F(P, 2, 6), (A1)
2(kg—p) =3
where
& = —y(P, p) = (ki—P*/4—p?)/Pp; (A2)
ke 2(kg ~p) 2k~ p2
§ dpy | dp,G(P,p)=(n)* [dpp*{ [ dPP*+ | dPP’a}G(P,p)
<kgp <kp 0 0 2(kg—p)
kv 0
= (4n)* | dpp® | dPP*«(P, p)G(P, p), (A.3)
(o] 0
where
0 for P > 2VK2—p?,
AP, p) = {6 for 2 kZ—p*> > P > 2(kg—p)s (A.4)
i for 2(kg—p) > P;
{ dp, | dp.H(p) = (8/3)ki(4n)? { dpp®g(p/ke)H(D), (A5)
<kp <kyp
where
g =1-3¢+3 8 (A.6)
APPENDIX B

Matrix elements of A™°

We present here a very simple derivation of expressions for the half-off-energy-shell
elements of #°°.2 We introduce partial wave radial functions u;: 0

APk, p) = H [k, p; p) = 4n § drr’j(kn)o(r)up, 7). (B.1)
Eq. (2.9) implies the following equation for u;:
ul(p, ) = j(pr)+an § dr'v>Gr, '; p)o(r)uyp, ') (B.2)

2 Expressions for completely off-energy-shell matrix elements of £ are given, e. g., in [14], where
they are derived from expressions for free scattering matrix 7, given in [26].
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where the Green function

1 M 0 q "~ 1 M q
Glr,r'sp) = 5 37 dkk%j(kn)j(ke)(p® — k*) = o 3 Pieromder,), (B3

where r_ = min (r, r’), and r_ = max (r, r’).
Since the half-off-energy-shell elements of 27" are the same for hard core interaction,
as for hard shell interaction [25], we insert for v in Eq. (B.2) the hard shell potential

o(r) = lim Adé(r—oc), B.4)
A~
and get for the product vy;:
u(Pup, 1) = A(p)o(r—c), (B.5)
where
Alp) = —j,(pc)/47rch,(c, ¢; p)s (B.6)

which follows from Eq. (B.2) and the requirement that u(p, ¢) = 0.
Inserting expression (B.5) into Eq. (B.1), and using expression (B.3) for G, we get

A (ks p) = —da(h>[M)p™ j(ke)infpc). B.7)
In particular, we have
H7(p, p) = —4n(h*[M)p~* tg 5,(p), (B.8)
where
tg 0p) = jlpe)/nfpe), (B.9)

where ,(p) is the phase shift for the hard core potential.
Eq. (B.7) may be written as

H (k, p) = 4n(h*[M)p~ kK, ), (B-10)
where & = k/ky, p = plkg, and
KXk, p) = —ji(kx){n(px), (B.11)
where x = kgc. Expanding k7 in powers of x, we get
(R, 5) = 3 5 ~ G 5+ 5B
;I"(s_:.()' P’k +5 0*F’ + 45 p°R)x" + 0(x°),
k3(k, p) = p*E>x"11575+ 0(x%),

kK, p) = QI+DF X Y [1x3x ... 21+ D +0(x*+3), (B.12)
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and for tg 6,(p) = —k(p, p), Wwe get
tgdy(p) = —% D%+ p°x° =5 p'x" +0(x"),
tg 05(p) = —p'x"[1575+0(x"),

tg 5(p) = — QI+ PP X [1x3% .. QI+DF+0*3). (B.13)
Finally, we have
KK, p)? = & x°p*k* % x* PR (5 B2+ P+ 0("). (B.14)
APPENDIX C

Formulas for Iy and Iy

After performing elementary integrations over k in Bqgs (3.11)—(3.14), we get:
IoP,p) =+ (1+3 PP(1—5 P)+p* (3 (143 P)

+[(1—% P?=pH2P] In ([(1+% PY*~p*)/[1—% P’ p°])

~1pmn([i+% P+p/[1+5 B-pD}, (C.1)

L,(P, ) = (5/AP%) [A(P, p)+ B, p) In ([(1+5 PV’ —F"1[1—% P*~p°D},  (CD)
Iy, p) = —% {145 P+ P24k P°, (C3)

1B, p) = £ P{—1-% P—% P’ +35 P*}, (C4)

where
AP, D) = P{—1+2 P24 L PP+ 5 PP 5 PP

+P2Q+1P+1L P)Y-p*(1+3 P)}, (C.5)
B(P,p) = -1 P -p*3-3 P’ —75 PH+p*(3+% PH-p° (C.6)
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