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THE EFFECT OF ELECTRON CAPTURE BY NEGATIVELY
CHARGED TRAPS ON THE ENERGY DISTRIBUTION OF HOT
ELECTRONS IN SEMICONDUCTORS
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The variational method is used to find the solution of the kinetic equation for hot
electrons in n-type germanium containing gold impurities. The effect of electron capture,
by negatively charged gold traps at low temperatures, on the energy distribution of hot
electrons is studied. It is shown that the influence of electron capture on the distribution
becomes more effective as the lattice temperature is lowered and the trap concentration is
increased.

1. Introduction

The energy distribution of hot electron systems in semiconductors has been studied
by many investigators [1-4]. Until now not much attention has been paid to the influence
of electron capture on the energy distribution of electrons. It is often thought that this
effect will be negligibly small. However, the appearance of impurity centres with large
capture cross sections [5-7] should increase the role of electron capture in affecting the
distribution. In the present work we consider the influence of electron capture, by negatively
charged gold traps on the energy distribution of hot electrons in n-type germanium at
low temperatures 7= 77 K and T = 20 K. Doubly and triply charged Au centres are
created in #n-Ge by charge compensation of shallow Sb donors. The concentrations of Au
and Sb atoms must be such that 2N,, < Ng, < 3N,, [8]. By means of a monochromatic
source of light, electrons are generated from the triply changed gold centres with energy
E > K,T. It is assumed that the relaxation of electron energy is due to acoustic phonon
scattering and the capture of electrons takes place by the doubly charged traps. .
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2. The kinetic equation

In the absence of external fields and in the presence of generation and recombination
processes, the spherically symmetric part of the distribution of electrons fo(E) is deter-
mined from the equation:

<5fo(E)) _IB "

ot T E)

The first term in (i) describes the elastic scattering of electrons by long wave length acoustic
2

phonons. For spherical constant energy surface, E = gy th's term can be written
. m

in the form [9]:

A(E)\ _ 20m)'* 5 [EPfo(E) E 5fo(E) 2
( )ac— 2% s l: OE? i <K0T +2) OE

= fo(E)] Q)
where m is the effective mass of the electron, V; is the velocity of sound, 1,, is the mean
free path of the electron when scattered by an acoustic phonon and T is the lattice temper-
ature. The second term in (i) describes the rate of change of f,(E) due to the recombination
of electrons with

1/t(E) = N.V(E)o(E) (iid)

N, is the concentration of doubly charged traps, V(E) is the velocity of the electron and
o(E) is the capture cross section. According to [1,10]

. ] 2mZe* wt
o(E) = w(E)E [exp <W> —]] -

where 9(E) is a slowly varying function, v is a small negative number, Ze is the charge
of the trap, ¢ is the dielectric constant and K is the wave vector of the incident electron.
The last term in (i) describes the generation of electrons. When electrons are generated
by a monochromatic light source with frequency o, this term can be written as [3,11]:

g(E) = IS(E—h&y+ Ejys-) (iv)

where I is proportional to the intensity of the incident photon flux, the ionisation cross
section of triply charged gold centres Au®- and their concentration Nygys-. Epys- 18 the
energy level from which generation takes place.

Substituting by (ii), (jif) and (iv) in () one can write the kinetic equation in the dimen-
sionless form:

dxl: dfo(x )+ 2 (x )] _AR(x)fo(x)fG5(x~xo) =0, ()]
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where
E hQO '-EA“S_ . /(p(KO T)vlaclvt
A= y Xo=——0—F——, A=— ",
K, T K,T 2mV;
R() Y —% 2nZe? G Ii,. Xo P s
() =x"exp( ), ¥ = ehVy - 2V \amK,T/) °
<2K0T>”2
VT = .
m
Using the substitution
Jo®) = y(x) exp (—x) 2
one can rewrite equation (1) in Euler’s form:
d dy(x) "
— [ P(X) —— | —AQ(x)y(x) + Gé(x —x¢) = 0 3)
dx dx

where
P(x) = x* exp(—x), Q(x) = R(x) exp (—x).

3. The variational method

The variational technique for the solution of the kinetic equation has been used by
several authors [12-14]. In the present work we shall try to obtain a solution for equation
(3) by a method based on the variational principle. This method is based on an appropriate
choice of a trial function which satisfies the boundary ‘conditions as the exact solution.
The functional for equation (3) is then written down in terms of the trial function. From
the conditions of minimum of the functional the variational parametets, in- the trial
function, are then determined. It can be scen [15] that the functional for equation (3) is

@

) C(dy(x, 2
SI¥x, x0)] = f dx [ P(x)-(“;ﬁx’“”) +AQ()YX(x, o) —2Gy(x, xo)aoc—xo)]. )
)7L

Together with the condition of balance, equating the number of generated and recaptured
electrons:

G=4 °§° dxQ(0)y(x, xo) ®)

the functional (4) achieves its minimum for the exact solution.
The simplest trial function, which satisfies the conditions of continuity of the distribu-
tion function at the generation energy X = Xq,.can be chosen in the form
R(x)
Y%, Xo) = a+B —3-
35 om,
x

2 -
+0(x—xp) [C(x ~x)*—G <(x_x-°) Rew® | f dx’ %)J : 6)

X

xQ
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where 0(x—x,) is the unit step function
O(x—xp) =1, x=0
=0 x<0
Using condition (5) yields

e T
where
o0 R2 x -X
Io = [ R(x)e dx, I;= j ( 26 dx,
0 x
0

X0

* 5. [ ()
I, = [ (x—%o)’R(x)e "dx, I3 = '[(x—xo)z — dx,

I, = fR(x)e“" de’ % dx.
x

The variational parameters B and C are determined from the conditions
AT I e 5 ©
53 yi=y aC yi=y

Inserting expression (6) for the trial function in the functional (4) it can be shown that
conditions (7) yield ,
T+ AT, + AT, X L1+AL2+_AZL3

= —, = i ®
D1+AD2+A D3 D1+AD2+A D3

where

I
T1 = il (I—z- +12> _i4(i3—1p(x0))9
0

T, = iyl +izie—io(iz—P(Xo) —isis, T3 = Igi7—1slo-
. 2 . . s .. s .2
Dy = igis—i3, Dy = isig+isiyo—2i1ies Dj = igijo—1ls

s (1 -,
Ly = iy(iz—p(x0))—1is (I_ +12) N
0 N
L, = ig(is—y(xo))+isig—isiz—i10 I +iy), Lz = iglg—1lqls0-
.‘»0’

= ] PO s, i = § e s
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i3

§ P w I, iy = :fP(x)c'Z(x)dx

8

iy = :fP(x)w”(x)dx, is = | Q0)P(x)dx

o

QNI dx, iy = ;f QX p()dx

Ot——) 8

iy = :fQ(x)C’(x)dx, it = :f 0y (x)dx

R I |
w9 =D I ey - 2
x IO IO

~1 2 y x’
n(x)=(‘i +I’3+’4) T {()‘ %) RO f %‘dx'}.
[} X X

X0

hw,
K, T’

Assuming that electrons are generated in the passive energy region [16] (x < x, =

hwo = 0.035 eV is the optical phonon cnergy), so, for convenience, the upper limit

of all the above integrals is approximated to be X,
Numerical calculations using the IBM 1620 computer have been performed. The
obtained values are given in Table I for T = 77 K.

TABLE 1
o v‘=‘—1 _ ) v=”—2 V= —3'
B Xo = 3.5 xo=4—_a_co=3.5 xo=¢_1——xo=3.5 Xo =4
_T1 3.318 - 107 1.559 - 107 6.783 - 10-8 | 3.550 - I; 1.463 - 10-8 5.132-10~°

T, 3.235 - 10713 1287 -107** | 1.842-107* | 5.656-10~'5 | 7.488-10-16 | 1.575-10-1
T5 3.990 - 10-2° 9.559-10~2! | 4.872-10~22 | 87861023 | 4.335-10-2* | 5.184 - 10-25

L; 4480 - 1013 2150 -10-'% | 2.352-10~* | 1.381-10"+ | 2,059 -10~** | 1.163 - 10-°
L, 1.602 - 10~? 1.715-10*7 | 4.838-10-2! | 2.362-10~2! | 8.625-10-23 | 3.626 - 10-22
L3 2.080 - 10-25 2.664 1072 [ 1,793 -10~2% | 8.420-10-2° | 7.168-10-3! | 2.641 - 10-3t

D, 2.089 - 1013 8.833-10~'% | 1.286-10~* | 4.892-10-'5 | 1.017- 1015 | 3.788 - 10~!6
D, 1.602 <10-° 6.337-1072° | 2.283-10~2! | 7.446-10-22 | 3.533-10-23 | 0.887-10-2¢
D3 2.080 - 10-2¢ 7.513 11077 | 7.482-10-2° | 2,108 -10-2° | 2.645-10~% | 6.042 - 10-32

I, 7.066 - 107 7.066 - 10~7 2.006 - 107 2.006 - 10~7 6.271 - 10-8 6.271 - 10-8
I, 5476103 5476 -1071% | 346710 | 3467-10~'¢ | 2787 -10-'5 | 2.787 - 10-'S
I, 4.947 - 107 1.936 - 107 1.015 - 107 3.853-10-8 2.099 - 10-8 7.695 - 10~

I 2.463 - 104 9.507 -10~'° | 1.052-10*% | 3.793-10-1¢ | 4,635-10~17 | 1.536-10~"
I, 1.607 - 10-¢ 1.017 - 10-¢ 3.396 - 10~7 2.072 - 107 7.250 - 10-8 4.243 - 10-8
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TABLE 11

y= —1 ’ y= —2 y=—3

XQ’—‘IZ ‘ xo=l6 X0=12 x0=16 XO=12 XQ=16

T, —1.103 10710~ ‘ 3.085 - 1012 |-2.586.10712 | 1.983-10~*3 | 2.667 - 1073 [ 1.149 - 104
T, —2.254 - 107" 2.604 - 10-2° |—7.989 - 10-2° | 1.220-10-22 |—2.476-10"2* | 6.661 - 1072*
T, —1.158 - 10-2* l—2.819 10727 |—2.704 - 1028 [—3.923 -10~3! |—-5.934 - 10-32 |—4.891 - 10-25

L, 1.147-10°Y 3.444 - 10718 | 1.479-10~'° | 4.408 - 10720 | 2.492-1072' | 7.417-10-%*
L, 9.600-107%% 1.857-10-2% | 6.791 - 10728 | 1.255-10~2% | 6.450 - 103! 1.172 - 10-3*
Ly 1.045-10-32 ‘ 1.939 - 10-3% | 4517 -107%7 | 7.399 - 10-3% | 2.802-10~* | 4.227 1072

D, 1.630-10-2 | 3952-10-2% | 2.108-10-2* | 5057-10-** | 3.551-107%° | 8.507- 10-27
D, 1219-10%8 2.303-1073° | 9.392-10-32 | 1.564-1073% | 9.612- 10735 1.463 - 1036
D, 1.206-1073%¢ 245710738 | 6.037-10~* | 9.516-10-*3 | 4.192-10%° | 5.506-10~*7

I, 3.334-10'° 3.334-10-1° | 4.973 - 10~** | 4973 -107* | 8.162-107'2 | 8.162-107'2
I, 7769 -10~*° 7.767-10°*° | 1.004-10-2° | 1004 -10-2° | 1.687-10"22 | 1.887 10?2
I, 4.078- 10" 1.359 - 10712 | 2933-10-'2 | 7.296-10~*4 | 1.722-10"%3 3.929 - 1015
I, 2539-107% 8.064 - 10-23 | 1.076 - 1023 | 2339 -10-25 | 4.781-10"2 | 6.885-10-%®
I, 1.612-107 9.528 - 10~® 9.442 - 10-° | 4.922 - 10-*° | 5.636-107° | 2.628 - 10~'°

For T = 20 K the results of numerical calculations are given in Table II. For small
values of A corresponding to trap concentration N,~ 103 cm— the variational parameters
Band Cin (8) will be independent of 4, in this case we have for the distribution function

’ G| . _, _ . =~ R(x
fol3 %) =~[10 e "+A{a+B )
A X
5 . x —xo)2R(x)e” ! &
+0(x—x¢) (C(x—xo)z——(—- 0>)c4 *) - jx’z dx’)} CXP(—x):I, ®
where
- I3+1 I, T I, L - T, ~ L
goBtle Lt 2 p_ 1 g =2,
I, I, D, IoD, D, T

The numerical values of the parameters @, B and C for T = 77 K are given in Table IIL
For T = 20 K the results for the parameters @, B and C are given in Table IV.

TABLE III
y= —1 y= —2 y= -3
X0 = 3.5 xo =4 Xo == 3.5 Xo =4 xo = 3.5 X0 =4
a —0.323 —0.595 —0.144 —0.763 —0.161 —0.302
B 1.588-10° 1.765 - 108 5.272 - 10° 7.257 - 108 1.439 - 107 1.354 - 107
¢ 2144 2.433 1.828 2.823 2.024 3.071
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TABLE IV
= —1 y= =2 p=—3
Xo = 12 xo = 16 X = 12 Xo = 16 Xo = 12 Xo = 16
é 2.193 - 10+2 2.513 - 10+2 | —1.569 - 10*2 | —1.080 - 10*2 —94.56 -37.70
B —6.769 - 1010 7.805 - 10+10 |—1.226 - 10-1¢ 3.921 - 1011 7.511 - 10%1! 1.351 - 10712
¢ 17.036.10+ 8.713 - 10+ 7.016 - 10+3 8.717 - 10+# 7.017 - 10+3 8.718 - 10+#

The second term in the squared bracket in (9) represents the effect of electron capture

on the energy distribution.

4. The capture

rate ratio

Using the obtained distribution (9), the capture rate ratio

— 8

| (=

Cn/ CM =

Oy, 8

Jo(%, X0)R(x)dx

0
f e *x'dx
0

Jo(x, x0)x'2dx | R(x)e *dx
Q

has been calculated, where C; is the capture rate when the distribution of electrons is

Maxwellian.

Case I:

For trap concentrations N, < 10'% cm—3. The results for 7= 77 K and T = 20K

are given in Tables V and VI, respectively.

TABLE V
p= —1 y= =2 y= —3
XQ-—3.5 xo—4 x°=3.5 XQ—-4 xo=3.5 xO=4
Cy 1
Cu B 0.66 0.80 0.29 0.36 0.09 0.17
X 10‘20Nt
TABLE VI
y= —1 Y= -2 y= —3
xo = 12 X0 = 16 Xo = 12 Xo = 16 Xo = 12 X0 = 16
Cy 1
Cu . 0.32 0.40 0.12 0.16 0.06 0.08
X10~17Ng
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Fig. 1. Variation of capture rate ratio with trap concentration 7 = 20 K
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Fig. 2. Variation of capture rate ratio with trap concentration T = 77K
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Case II:

For trap concentrations N, > 105 cm2 the second and third terms in the numerator
and denominator in expressions (8) become comparable to the first term. Therefore, the
values of the variational parameters B and C will depend on the parameter 4. Ini this case
the part of the distribution function, representing the effect of electron capture will non-
linearly depend on the parameter A.

The results of numerical calculations for the capture rate ratio in this case are shown
in figures 1 and 2 for lattice temperatures 7 = 77 K and T = 20 K, respectively.

5. Discussion

. Using the variational technique in solving the kinetic equation, the solution is obtained

in the form of a sum of two parts (equation (9)). The first part (Maxwellian part) is an
exponential function of energy. The second part of the solution (additional part) depends
on energy in a more complicated way. This part of the distribution represents the effect
of electron capture on the energy distribution of electrous. It is shown that, for small
trap concentrations N,, the additional part is small and linearly proportional to N,. With
the increase of N, the additional part of the distribution becomes more effective and
nonlinearly dependent on N,. It is important to underline that N, must not exceed certain
limit, at which the semiconductor is considered highly doped one.

The capture rate ratio has also been calculated using the obtained distribution
function. The results show that this ratio increases with an increase of N, and when the
Iattice temperature is lowered.

We notice from the figures that the higher the energy of the electron, the higher the
value of its capture rate. This is attributed to the fact that electrons with higher energy
can more easily surmount the barrier, surrounding the negatively charged trap. It is
important to underline that if electrons are generated with energies E > hw, i.e. in the
active region [16], then after emitting optical phonons they fall in the passive region with
energy E < hw, as those considered in our study.

From the results it is also shown that the higher the energy-loss mechanism param-
eter |v| the smaller the capture rate. This indicates that, on the other hand, electrons
with lower energies loose their energy quicker and become captured.
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