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A general equation describing convective diffusion of spherical particles under. an
external force field has been formulated by\introducin'g «wall effects” dyadics. The equation
obtained was explicitly evaluated for the rotating disc and numerically solved on a CYBER-72
computer using our FORTRAN program based on Hamming’s predictor-corrector method.
The flux of particles at the disc surface was graphically presented as a function of the particle
radius confined within the range of 0.05+10.0 ;Lm;

1. Introduction

The deposition of fine particles from flowing suspensions onto the surfaces of macro-
scopic objects (often called collectors) or onto much larger particles is of great theoretical
and practical importance in studies of collpid stability, filtration, detergency, froth and
«carrier” floiation.

Clint et al. [1], Spielmaa and Friedlander. [2], Ruckenstein and Prieve |3, 4], Dahneke
[5], Bowen, Levine. and Epstein [6] have recently developed a theoretical approximation
for quantitatively determining the deposition kinetics of small particles onto solid surfaces.
They have assumed a convective mass transfer in the bulk of the suspension and a first
order reaction at the collector surface. Such an approximation, although useful, is not
always justified and fails completely in systems with no, or very small energy barriers,
Spielman et al. [7-9] have analysed collection kinetics of particles by spherical, cylindrical
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and rotating-disc collectors using the trajectory approach. They have taken into account
real hydrodynamic, gravity, London-van der Waals, and electrical double-layer forces.
However, the diffusion of the particles was not considered and consequently the results
obtained by them cannot be applied for small particles (say, with radius below ~ 2 pm),
Ruckenstein and Prieve [10] have solved numerically the complete convective-diffusion
equation for the spherical collector, considering gravity, and London-van der Waals
forces, and the position dependent diffusion coefficienit. The accuracy of their calcula-
tions was not very high because of the computer memory limitations.

In the present paper a theoretical estimation of the particle flux at the rotating disc
surface is presented without accepting the above mentioned simplifying assumptions.
Convective diffusion in an external force field has been adopted as a model. Gravity and
buoyancy, London-van der Waals and real hydrodynamic forces have been considered.
Although the rotating disc has been frequently applied for studies of the heterocoagulation
of colloids [1, 11, 12] quantitative theoretical calculations of the particle flux had never
been done, and the experimental data were usually interpreted in terms of Levich’s formula
[13], which of course is a very crude approximation for particles greater than about
0.2 pm.

From the mathematical point of view, the equations describing the steady-state
diffusion of particles to the rotating-disc surface are relatively easy to handle with a com-
puter, and enable the calculations to be very accurate.

2. Statement of the problem

Let us consider a monodisperse suspension of spherical particles with radius @ and
density g,. The particles move quasi-statically at low Reynolds numbers with an instanta-
neous vector velocity of the centres U in a fluid velocity vector field ¥, The velocity fields
U and V are measured relative to a space coordinate system fixed on the collector surface.
The particles are assumed to behave independently by ‘excluding all particle-particle
intéractions and the volume of the suspension is-assumed to be sufficiently large, thus the
bulk concentration of the particles remains constant during the deposition. Let us assume
further that the particles captured by the collector surface do not disturb the later diffusion
process. This requires the particle coating not to- be dense. If the instantaneous particle
number-concentration at a point in space is denoted by 7, the mass balance of about
a'volume elément of the suspension may be formulated as

oo +V-j=Q(R,n,u), )]
ot
where j is the particle flux vector, and the term O(R, n, t) denotes the rate of particle cre-
ation or disappearance, and R is the position vector. The total flux j consists of a diffusion
flux due to the random Brownian motion of particles and a convective flux due to the
action of ahy'hydrodynamié or external force and torque acting on the particles. Thus,

j = —~D - Vn+Un, 0)



349

where @ is the translational diffusivity diadic of a spherical particle in proximity of the
bounding surface. The velocity vector of the particle centre U can be determined from
the relations

—q(H - U+ AT o) = F, (3)
”'n(%c- U+=%/r'w)=Tr’ (4)

which are analogical to those given by Brenner [14-15]. In the above relations ', H o K
are respectively, the translational, rotational, and coupling dyadics of a spherical particle
in proximity of boundaries, # is the viscosity of the fluid, and e is the angular velocity of
the particle; the affix ¥ denotes the transposition operation. F, and T, are respectively,
the hydrodynamic resistance force and torque acting upon the particle. The @, A, X ;
and A, dyadics are functions of the space coordinates only. -

The net force and torque acting on the particle must, of course, be equal to zero,
thus we can write F.+ F, = 0, and T.+ T, = 0 where F, or T, consist of the external
force or torque F., 7T.. and the hydrodynamic force F, or torque T}, experienced by a
particle taken to be held fixed in the fluid velocity field V. Considering the above and
eliminating e, equations (3) and (4) yield

U= —nP'p'fr'(ft'%r—%Z'%’c)'1~11Tp'Jifl"(%t'%’r—ffl'%c)'l, (5
From the generalized Stokes-Einstein equation given by Brenner [15-16] the hydrodynamic
resistance dyadics o, H ', A . are related to the diffusivity dyadic & by the following
equation:

kT
@=’—?%rr'('%ft'fr—xi'fc)_1=kT%: (6)
h

where 9 is the mobility dyadic, and T is the absolute temperature. Substituting Egs (2),
(5), and (6) into Eq. (1) we finally obtain:

¥
—é':— oV [—KTR - Vns (AR Fpm AL A7 M TIn] = QR 1), (D)

In deriving Eq. (7) all inertia effects were neglected, therefore it can be applied for suffi-
ciently small translational Reynolds numbers of the particle only. The above equation
with appropriate boundary conditions describes the convective diffusion of spherical
particles under an arbitrary vector field of forces to an arbitrary collector surface.

3. Rotating disc

Let us assume that the collector is a disc of radius R, rotating with constant angular
velocity @, in a liquid, and that the disc is sufficiently large, so the edge effects can be
ignored. The wg-vector lies parallel to the z-axis of the cylindrical coordinate system,
having its origin at the disc centre (cf. Fig. 1). The explicit evaluation of Eq. (7) for the
rotating disc collector requires the analytical expressions for M, A, AT and T, to be
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known. According to Brenner [17] the motion of a spherical particle in the vicinity of
a solid plane boundary may be decomposed into two separate motions: with translation
directions perpendicular and parallel to the boundary. This is possible because. all equa-
tions govering particle motion are linear, and the boundary conditions are additive. Thus,
the resistance dyadic take the following forms 18]

Ho=id K, +(F—ii)K, |, ()
xt =. ililKr,J_,','(f—ilil)Kr,”) : (9)
He=6 iK,,, S (0

where i, is the unit vector directed perpendicular to the wall pointing into the liquid, # is
the unit dyadic and & is the unit isotropic triadic (alternating triadic cf. Happel, Brenner
[19), k,,, , K, K, |, K, i and K, ; are the scalar resistance cocfficients, each.of them
depends only upon a/h (h is the separation between the particle and collector surfaces).
They are always positive numbers and possess -the. following properties: K,  /6ma,
K \/6ma, K, | [8na?, K., /8na®, tend asymptotically to:unity.as afh — 0 and K, tends
to zero in this limit. The tabulated values of the Tesistance coefficients as functions of hla
-are to be found in Refs [20-22]. Considering Egs (8)-(10), the mobility dyadic takes
the form

M = iiy(K,, - K, ) H(F~iyiy) Koy Koy ~KZ2 )7, 1)
Assuming that the #; unit vector coincides with the i, unit vector and that the particlé con-

centration is a function of the z-coordinate only, Eq. (7), by considering relations 9)-(11),
can be formulated explicitly as follows (in cylindrical coordinates r, 0, 2) '

on 19 o B ' )

"ot +'77 o {T[Kr:ll(Kt’H—Kill) le,r“Kc,”(Kt,”Kr,”— ) I M 3
i g K. (K K2 ) iF 2 \=1

+7 -, 6_0{[ r,”( o —Ke) p,,;—Kc,”(Kt,”Kr,”—Kc,”) T, In}

O f . on .
+i’,£ Kt,J_ —kTE +FP,ZT? =Q(ra 09 Z, h, t), (12)

where F, ,, F, 4, F, , are the corresponding components of the force vector, and 7,,,, T, ,,
T

p.z are the corresponding components of the torque vector. Under the steady-state condi-

b3} A R «
tions 5; = 0, and assuming the term O(r,0,z,n,¢) to be equal to zero, Eq. (12) is

simplified considerably, and can be numerically solved, provided that the analytical expres-
sions for K, 1> Ko 15 Ke,jjs Fopps g Il L Ty, T, are known. The tabulated values
of K; | as a function of H were given by Brenner [20] and by Goren [23]. Therefore

1 z
K., =8“F1 — -1,

na a

where F, is the universal hydrodynamic function of the gap width H = zja—1 (cf, Fig. 1).
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The tabulated values of K, , Ky, K, can be obtained by virtue' of Goldman, Cox,
and Brenner’s [21] solution of the Stokes creeping motion equation for a sphere moving
in a semi-infinite fluid parallel to a solid plane surface. In order to obtain the analytical
expressions for F,,, Fy g, Fy, ; We need to know the velocity vector field ¥ of the liquid near
the rotating disc. The problem of laminar ﬂow due to the rotatmg disc was first solved by

Z
'y
°
s —— [
R
e \Q\‘

/

Fig. 1. Coordinate systems for the rotating disc

von Kdrmdn [24] and later more exactly by Cochran [25]. At small distances from the
disc surface, thé components of the liquid velocity field ¥ expressed in cylindrical coordi-
nates relative to the disc surface are (through the first terms) '

V, = f(0) (@*o)rz (14)
Vo = 8(0) (@*)¥rz (15)
V, = —f(0) (@ )*z? (16)

where f(0), g(0) are the universal (dimensionless) constants for the rotating disc and v
is the kinematic viscosity of the liquid.

Spielman and Fitzpatrick [8] decomposed the undisturbed velocity field V near the
disc, by the introduction of local Cartesian coordinates (x, y, z) which are tangential to
the directions (7, 0, z) and have their origin at the point (r, 8, 0) see Fig. 1, and local
cylindrical coordinates (@, @, z) with the same origin as the (x, y, z) coordinates.
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According to [8] ¥V = V,+V,, ,+ Vanx+ Vep, Where

Ve = f0) (0°W)(@zi5—2%), am
Vs = f(0) (0°[v)Prz,, (18)
Vinx = 8(0) (0*)*rzi, (19)
Veo = 800) (0°/V)¥aziy, (20

here i,,i,.7,, i, i¢ are the unit vectors, and ¥, is the axisymmetrical stagnation field which
induces a purely z-directed force on the particle, Viny 18 the uniform shear field which
induces a hydrodynamic force parallel to the disc surface in the y-direction (which for the
particle, coincides with the r-direction), and a hydrodynamic torque in the x, (6) direction,
Ve, induces a force parallel to the disc in the x-direction (which for the particle, coincides
with the f-direction) and a hydrodynamic torque in the y, (r) direction, and finally Veo
1s a spinning flow which tends to spin the particle in place about the z-axis. The particle
motion induced by the fields ¥, , and ¥,, cause no net contribution to the collection of
particles by the disc. 3

By virtue of the above considerations Spielman and Fitzpatrick have determined the
hydrodynamic force F,, on particles immersed in an axisymmetrical stagnation field,
giving the expression.

Fye = —6mnaf(0) (@*})*z*F (H) 1)
where Fy(z/a—1) is the universal hydrodynamic function, known for all H from the exact

solution of Stokes equation, given by Goren [26] and Goren and O’Neill [27].
The expressions for F,, and Ty are given by Goldman, Cox and Brenner [28], thus

Fy, = 6mnaf(0) (*/v)*F3(H)rz, (22)
Tho = 4mna’f(0) (@*/W)*F (H)r, (23)

where F3(H) and F,(H) are universal hydrodynamic functions of the gap width H.

Putting (13), (21), (22) and (23) into equation (12) and considering that F, 4 and T,,,
do not depend on 6, and that the external force is purely z-directed, we get (under the
steady-state conditions) I

E{F#D {@‘ — [f«» (@) + ~2 } }}
0z 0z 6mna 6nna

= 2(0) (@*[v)*zF s(H)n, (24)
where

i . _ a
Fs(H) = K, (K, —KZ )" 'Fo(H)~K,, (Ko Koy —KS )T Fa(H) 3, (25)
h

is another universal hydrodynamic function giyen by Goldman, Cox and Brenner [28].
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Eq. (24) is an ordinary linear differential equation of the second order and is subject
to the following boundary conditions:

n=mn, at z-—> 00, (26)

where & denotes the closest distance between the particle and the disc surfaces, and ng,
is the particle number concentration in the bulk.

4. Method of solution

Equation (25) and the corresponding boundary conditions (26) were transformed
into dimensionless form by the substitutions

n=nn, H=zla—1, D, =kT[6nna, 27

where D, is the diffusion coefficient of a spherical particle in an unbounded liquid. Thus,
we ‘obtain -

d

: dn . o - aFg _
— JFi(H) —d—I—1—+Pe(H+1) F(H)yn+ T

n]} = Pe(H +)Fs(H)n, (28)

dH

where

_ 2aVg _ sns &
Pe = o 2f(0) (0”v) D

el

is the dimensionless Péclet number calculated for the liquid H-velocity component at the
point H = 1, (z = a). The appropriate boundary conditions are now

n=0 at H=3J, 29)
n=1 at H- o,

where & = 6/a is the dimensionless closest distance between the collector and particle
surfaces.

Let us assume that the external force consists of:

1. Net gravity and buoyancy force given by the expression

Fg"‘Fb = (mp—ml)g = 4/37'“13(9;:—@1)& (30)

where m,, 0, are the particle mass and density respectively, and my, 0, are the liquid mass
and density respectively, and g is the ‘acceleration due to gravity.
2. Retarded London-van der Waals force, having evidently an H-component only

oA A(3a+22.232H)

= Bkl 31
L™ 6a% HX(Ma+11.116H)* @1
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where 4 is the Hamaker constant, and 4 is the characteristic wavelength in'the dispersion
energy theory. Here, the formula given by Suzuki, Ho and Higuchi [29] was adopted. The
electrical double-layer forces, and: the body force due to the radial acceleration of the
particle have been neglected.

Using Eqs (30) and (31), Eq. (28) can be rearranged to the form

d N b e o s ag (410 [(Ha) +22.232HT
I, {FI(H) {?ﬁ +% Pe [(H+1)*F,(H)+Gr]n+Ad H—Z[(A/Ta)+11.11671]2' n}}
= Pe (H+1)Fs(H)n, (32)
where : T e
44¢g

" 9f0tviel

is the dimensionless adhesion num-

is the dimensionless gravity number, and Ad = T

ber. The boundary conditions are the same as expressed by Eq. (29).
The particle flux at the disc surface can be expressed as

d D) /[ dn D, n,, dn
Jo=s = D(G) (d—")= - (ﬁ) ) (d—l’j) (33)

where D(d), D(8) are the diffusion coefficients at the point ¢ and & respectively.

‘The flux of particles was determined after numerical integration of Eq. (32) using
Hamming’s predictor-corrector method with initial values calculated according to the 4-th
order Runge-Kutta’s method [30] on the CYBER-72 computer. Further details of the
calculation can be found elsewhere [31].

5. Results and discussion

The numerical solution to Eq. (32) gives the flux of the particles at the disc surface as
a function of the dimensionless parameters Pe, Gr, Ad, 4/a or as an explicit function of the
physico-chemical parameters describing the state of the system such as temperature,
viscosity and density of the liquid, density and radius of the particle, disc angular velocity
etc. Most of the computation results and the discussion were presented elsewhere [31].
. Fig. 1 shows the dependence of the normalized flux j = j/n,, on the particle radius a,
at fixed selected values of the apparent densities of the particle 4o. The temperature was
assumed to be 293°K, the liquid viscosity 10-2 g/cm sec, the disc angular velocity
= 25rad/sec, the Hamaker constant 4 = 10-*3 erg. The straight line 3 drawn as a refer-
ence denotes the flux calculated according to Levich’s formula

j = 0.62w*D¥ "+
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As it can be seen in Fig. 2 our predictions approach asymptotically Levich’s values as the
radius of the particle becomes small  (for a < 0.2 pm independently  of the particle
density and the Hamaker constant. On the other hand, for larger particles, it is clear,
that the Levich equation’ cannot be applied even as a crude ‘approximation (especially

T T T = T T T B T . / _I_ =1
10-3 B //' i
ey /
@ ," .
q rd
~ y
€ /
& J
- /
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1073 ]
: =
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01 02 0.4 06 08 1 2 4 6 8
afum]

Fig. 2. The normalized flux 7= jln at the disc surface as a function of the particle radius a. The temper-
ature was assumed to be T = 293 K, the liquid viscosity # = 10~2 g/cm sec, the Hamaker constant
A = 10~13 erg; the disc angular velocity @ = 25 rad/sec. Curve I: for the apparent density of  the particle
Ap = 0.3 g/em®. Curve 2: for the apparent density equal to zero. Curve 3: for diffusion alone Levich’s
formula 7 = 0.62 w*D3v¥, Curve 4: for apparent density of the particle —0.3 glcm®

for dense particles). Therefore, for a particle with a radius of 3 pm and an apparent
density of 0.3 g/cm® Levich’s formula gives a flux value of about two orders of magnitude
smaller than our predictions, and for a particle with apparent density —0.3 g/em? a flux
value of about two orders of magnitude greater (the minus sign of the apparent density
value denotes the net gravity and buoyancy force acting away from. the disc surface).

6. Conclusions

1. The transport equation presented above describes the convective diffusion of
spherical particles in an arbitrary force field to a solid surface of an arbitrary geometrical
shape.

2. This equation formulated explicitly for the rotating disc system becomes an
ordinary linear differential equation of the second order.
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3. The numerical integration of this equation gives the flux at the disc surface as
a function of dimensionless parameters Pe, Gr, Ad, A/a, describing the influence of hydro-
dynamic, gravity and London-van der Waals forces, respectively.

4. For very small particles (with radius less than about 0.2 pm) our predictions become
identical with those calculated according to Levich’s formula. For. greater particles the
flux is mainly due to interception and sedimentation.
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