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Measurements of the Young modulus have been carried out on (010) plane for
a natural gypsum crystal by means of a dynamical method. The elastic constants calculated
by the least squares procedure for 80 experimental points, given in Table II, are quite close
to those obtained by Coromilas under static conditions. This illustrates the applicability
of the resonance method for studying the elastic properties of crystals.

1. Introduction

Elastic properties of gypsum crystals were elucidated first by Coromilas [1] who
measured the magnitude of strain of a thin lamellae supported at both ends and ballasted
in the middle by a known weight. Full description of the elastic and thermoelastic tensors
of that crystal has been given next by Haussiihl [2], whose measurements were carried
out by using the modified Schaefer-Bergmann method of diffraction of light on standing
ultrasonic waves.

On the other hand, a simple and efficient method of measuring the dynamic Young
modulus of a thin sheet of material has been described by Horio and collaborators [3, 4].
According to these authors the elastic constants can be deduced from the resonance
characteristics of a thin lamellae attached to a loudspeaker which is supplied with a.c.
current of variable acoustical frequency. It was of interest to compare the results of the
application of this method to a material whose mechanical properties and structure are
relatively well known. In this way we could get an idea about the applicability of the reso-
nance method to study the problems of mutual correlation between physical properties
of crystals and their structure.
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2. Experimergta’l

In the present study natural gypsum crystals were used, originating from a mineral
deposit near Pinczow in the valley of the Nida river. From blocks free of macroscopic
faults and intrusions, thin plates (0.1 mm) were cleaved. The Miller indices of the cleavage
plane are (010). The plates were next divided by means of a razor blade into a number
of lamellae of known orientation with respect to the crystallographic a axis. The best
samples of an average size of 15 x4 x 0.1 am were bbtained while carrying out the cleavége'
and cutting procedure on a crystal immersed in water.

Viewing the samples in a polarizing microscope between crossed polars we have
found that nearly all plates exhibited very subtle parallel tracks which were shown by
means of the X-ray method to be parallel to the g axis. This greatly facilitated the identifi-
cation of the orientation of samples by means of optical observations. The angle taken
between the length of a sample and the crystallographic a axis will be denoted by 3.

The crystal structure of gypsum has been described by Atoji and Rundle [5] and
its refinement has recently been reported by Cole and Lancucki [6]. In this paper the more

c

Fig. 1. The orientation of crystallographic and optical directions on (010) plane of gypsum crystal. O. B. —

obtuse bisectrix, A. B. -— acute bisectrix

recent results given in [6] were used. The gypsum crystal is monoclinic, space group I2/a,
the unit cell contains four units: ‘CaS0,-2H,0 and has the following dimensions (all
length parameters known with an accuracy +0.002 A)

a=5670, b=15201, c=65334, P =11836'+4"

For the purpose identifying the Miller indices of the cleavage plane and crystallo-
graphic directions, X-ray oscillation photographs were taken with a Weissenberg camera.
The orientation of a, ¢ axes on (010) with principal optical directions determined in 171
is shown in Fig. 1. L ‘ '

The resonance curve of a sample while in a state of forced vibrations of variable
frequency and, therefore, of variable amplitude, too, was measured at reduced pressure
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because of additional damping effects in conditions of normal atmospheric pressure.
It has been found that at a pressure of 10 mm Hg or lower the width of the resonance
curve becomes constant and independent of pressure.

At each frequency, v, supplied by a RC generator and measured with a digital fre-
quency meter, the amphtude of the forced vibrations of the free end of the sample, A(v),
has been observed by means ofa microscope equlpped with a Huygens ocular. The amount
of pitch of the micrometric screw of the ocular has been determined using the transparent
micrometric scale with divisions every 0.01 mm.

For further treatment the single and only slightly asymmetrical resonance curves
were used, determined in the frequency range far enough from points corresponding to
the “eigen-frequencies” of the loudspeaker. From a graphical plot of A(y) the following
constants ‘were read: the resonance amplitude of the vibrations, A4,, the resonance fre-
quency, v,, and the half-width of the curve between two poiats for which A(v) dropped
to A,/ 2. With an accuracy not worse than one per cent'we ha¥e in a case of a rectangular

lamellae [3, 4]
v lZ 2
E, = T
: [0162 d] i W

E; = Ey x(4v[v), )

and

where /is the length of the lamellae, d its broadness and g the bulk density of the material.
E, denotes the dynamical Young modulus and E, is responsible for dynamical losses
due to internal friction, 5, at a given frequency

E, = 2nvy. ; , 3)

3. Results and discussion

The measurements were carried out on 58 samples in the range of 0<C 9 < 180.
A number of samples were re-examined for the second.or third time under different
physical conditions, such as variable air pressure or the amplitude of driving force, or
the direction of approach to the point of resonance. As a whole 80 points have been
obtained as listed in Table I and shown in Fig. 2.

For all experimental points the best curve can be calculated which describes the
section of the elastic tensor with the (010) plane. This was done by means of the least
squares procedure in the following manner. From E; values the corresponding components
of the elasticity tensor, S,,,,, were calculated

(E1).1 = St = almalnalpalqsmnpq’ )

where a,, are cosines of angles between the direction x} along which E, has been measured
and a set of orthogonal x, axes. The x, axes are defined by a set of unit vectors, e,, €, and e,
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given by the following relationships

a

2

"l

b

_m,

83 = el Xezu

®)

TABLE I
Experimental values of the dynamical Young modulus, CaSO, - 2H,0, (010) plane

—
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E;x 101 E,x 101
deg dynes per cm? | No ‘ deg dynes per cm?
0.0 4.023 | 41 97.9 5.500
0.0 4.023 | 42 98.9 4.645
0.0 4,051 @ 98.9 4.645
0.7 4,051 | 44 106.9 4.587
1.0 3,808 | 45 106.9 4.587
1.0 3,808 | a6 106.9 4.587
1.0 3.854 47 106.3 4.703
1.4 4.328 48 106.3 4.703
43 4.437 49 110.8 6.853
12.4 3.584 [ 50 110.8 6.853
18.5 4.155 | st 110.8 6.853
21.8 3.154 '! 52 114.0 5.926
21.8 3.154 153 114.0 5.898
354 2.571 54 114.0 5.898
354 2.571 |5 115.2 6.931
44.6 3.052 | 56 1152 6.931
44.6 3.052 57 1152 6.931
44.6 3.052 58 115.3 6.074
45.6 2,622 59 115.3 5.921
49.6 2.476 60 115.3 6.074
524 2,580 - 117.2 6.987
54.4 2.501 | 62 117.2 6.987
592 2,529 63 130.8 5.646
60.0 2,437 64 132.1 5.299
60.0 2.437 | 65 142.5 4.458
62.6 2.592 66 1522 5.001
62.6 2.592 67 152.2 5.001
65.0 2.724 | 68 152.2 4.832
65.0 2.724 |69 152.2 4.832
65.0 2.811 | 70 156.0 5.225
68.3 2.962 7 156.7 4.395
70.8 2.626 '| 72 156.7 4.395
70.8 2.488 73 161.2 4.811
74.7 3.216 ‘ 74 161.6 4.998
77.8 3.916 |5 170.1 3.688
83.6 3.401 | 76 170.1 3.688
83.6 3.382 77 172.7 4.316
83.6 3.565 78 178.7 4.342
97.0 4.206 | 79 178.7 4.300
97.6 5179 | so 179.3 4.377
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Therefore, the Spnpq COmMponents are given in the X, Xz, X3 system of axes. Otherwise,
we can express the direction of xj by means of directional cosines /;, I, and I3 with respect
to x, axes. We have for a (010) section

i =cos, I=0, [Iz=sind (6)
X3
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Fig. 2. The (010) section of elasticity tensor, S’. @, ¢ crystallographic axes, I — curve calculated according
to Haussithl results [2], 2 — least squares curve calculated from experimental points

Making use of the fact that x,||b where b is a two-fold symmetry axis of the crystal we
can reduce (4) to the following equation of the section of elasticity tensor S;;
(ED)~1 = A4, cos* §;+4, cos® 9, sin 9;+ A5 cos® 9;sin” ;
+ A, cos 9; sin® 9;+As sin* 9 = ), A;F FCAR D
where i = 1,2, ...80, j = 1,2,...5 and ’
Ay =81, A2 = 2815, As = 2813 +Sss, Ay = 2835, As = S3a- )

Aj are the unknown constants of the section so that the normal equations are of the form

0 .
rvs {(E(f)) 1 Z AjF j(’gi)}z =0 )
and lead to five equations linear with respect to A;’s.
TABLE 11
iy constants of the (010) section of elastcity tensor in crystal of EYPSUT, in 10* co*/dyne units
S11 ‘ S1s ‘ Sss \ 2S13+Sss r S33 \ Ref.
e R S R BN
2.48 0.29 i 2.06 6.56 2.34 this work
2.072 0.577 1.362 4.590 2.016 Haussithl [2]
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The calculated S;;constants are given in Table IL We see that the agreement between
our values and the S;; constants obtained from data given by Haussiihl [2] is, in general,
quite good. Some discrepancies, not exceeding 30 per cent in numerical values of the
elasticity constants, may be due to certain systematic difference in the properties of the
crystal samples used as well as to specific difference between the static and dynamical
methods. Also the cutting procedure, which is necessary to obtain samples of proper
dimensions, may effect the results of measurements as it increases the significance of edges
of the sample in comparison to its cross-sectional area. Nevertheless, the resonance method
leads to reasonably good results and, owing to its simplicity, can be used to determine
the section of the elasticity tensor for crystal plates.

If we make a superposition of the results from Fig. 2 (curve 2) on a view of structure
on the (010) plane we can find an interesting correlation between mechanical properties
of a gypsum crystal and the distribution of SO ions and water molecules, Fig. 3. Ca?+
ions are omitted because, owing to high symmetry, they take special positions on (010)
and have no influence on the orientation of tensor section on that plane. The direction
of minimum S, corresponding to the minimum of strain of the lattice at a given stress,
nearly coincides with the direction of 0,0 of sulphate inns. This is understandable
because the strongest overlapping of electron distributions round neighbouring oxygen
atoms occurs while compressing the lattice in that direction. Maximum of strain can
be reached in a direction parallel to the bisectrix of O,0;; angle, and this approximately
points to the maximum of §'. Intermediate values of S’ are met approximately in a direction
parallel to chains of hydrogen bonded water molecules. However, it can be anticipated
that hydrogen bonding involves some increase of stiffness of the lattice.

This work has been carried out as part of a larger research program of “Material
Science”. Calculations have been made with a computer ODRA 1204 in the Computing
Center of the Technical University of Wroctaw.
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