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The functional basis sets explicitly depending on the external electric field strength
are considered and their usefulness for the calculation of atomic and molecular electric
properties is discussed. The concept of the so-called electric-field-variant YGaussian-type
orbitals (EFV GTQ’s) is reconsidered and a particular attention is paid to some specific
computational problems arising in the numerical perturbation approach.

The- concept of electric-field-variant Gaussian bases is extended to the Slater-type
orbitals by using their Gaussian integral transform. The effectiveness of the electric-field-
-dependent Slater-type bases is illustrated by the polarizability calculations for two-electron
atomic systems. Also their superiority in comparison with the EFV GTO’s is indicated.
1t follows from the present paper that the corresponding Slater-type bases should be also
quite useful in the calculation of accurate values of molecular electric properties. Additionally,
the concept of perturbation-dependent bases is extended for a variety of physically important
perturbations.

1. Introduction

It is well known that a reliable theoretical prediction of the so-called atomic and
molecular electric properties is usually far more difficult than the calculation of quite
accurate energies of isolated atoms and molecules [1, 2}. For rather obvious reasons a vast
majority of quantum chemical studies of many-electron systems is energetically oriented.
The calculation of sufficiently accurate energy of the isolated many-electron system is
usually the main target of these studies. The energy-optimized approximate wave functions
may not be appropriate for describing the system response to the external electric field
perturbation, i.e., for the calculation of its electric properties. A similar statement is also
valid for a number of other atomic and. molecular properties [3, 4].

The so-called electric properties of atoms and molecules are precisely defined by
subsequent terms in the power series expansion of the electric field dependent energy E(F),

E(F) = EQ+EF,+ERF, Pyt .o €]
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where the repeated Greek subscripts imply the ordinary summation convention and E©
is the field-free energy of a given system. For F being a static uniform external electric
field the first-order term ES" defines the system dipole moment component

and the second-order term £}’ is proportional to the cotresponding component of the
static electric dipole polarizability

&, = —2E2). 3

These two electric properties of many-electron systems appear to be the most important
ones from the experimental point of view. The possibility of a reliable calculation of these
properties will not only provide valuable numerical data of unquestionable uscfulness
but it may also reveal a number of subtleties of the electron density distribution in atoms
and molecules.

The standard approach to the calculation of subsequent expansion coefficients of
Eq. (1) is by using the appropriate perturbation theory [5]. However, for the perturbation
theoretic treatment of the external electric field effects one has to anticipate that the corre-
sponding unperturbed problem has already been solved. In practice this assumption is al-
most never satisfied and its violation may substantially influence the computed properties
[6]. Moreover, to get the second-order term one has to assume that the complete set of eigen-
functions of the unperturbed Hamiltonian is also available. Since all the computational
methods of quantum chemistry are naturally limited to finite-dimensional functional
spaces, the calculation of other than energy properties of many-electron systems should
involve quite extensive, property-directed optimization of trial variation functions.

The task of a full variation optimization of the approximate solution of the perturba-
tion problemﬂcan be substantially reduced if a given finite-dimensional set of basis func-
tions depends itself on the external perturbation. This idea of a variable, perturbation-
following functional space proved to be extremely useful in the calculation of molecular
magnetic properties [4, 7]. The same applies to the so-called floating orbital bases employed
for the calculation of molecular forces and force constants [3, 8-10]. In both these cases
the perturbation dependence of the basis set functions has usually a fixed analytic form
[11, 12]and in fact no additional variation optimization of the variable basis set is required.
The success of the corresponding perturbation methods is mainly due to the appropriate,
physically justified choice of the perturbation dependence of a given set of functions.

A rather high efficiency of the variable basis set approach in the case of molecular
magnetic properties stimulated a search of analogous bases for other classes of physical
perturbations. For the external electric field perturbation a set of one-electron basis
functions directly depending on the strength of the electric ficld was first proposed by
Moccia [13]. However, Moccia’s proposal does not provide enough flexibility of the
constructed field dependent set of functions.

Recently, another explicitly field-dependent basis set was suggested by the present
author [14] and was shown to be very efficient in the calculation of atomic and molecular
electric properties [14-17]. The original proposal was concerned with the so-called Gaussian
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functional bases. The aim of the present paper is to extend the concept of the electric-
field variant (EFV) Gaussian orbitals to the Slater-type orbital (STO) bases. In the next
Section the basis ideas of the EFV Gaussian-type orbital (GTO) bases are briefly reviewed.
Tn Section 3 some computational aspects of perturbation calculations using EFV GTO’s
are discussed. In the subsequent Section the EFV STO’s are introduced by using the Gauss-
ian transform approach and their efficiency is illustrated by several numerical examples.
The conclusions concerning the usefulness of the EFV basis sets are summarized in the
last section of this paper. Also the possibility of a similar construction of the perturbation-
dependent basis sets for other than electric field perturbations, is considered.

2. Electric-field-variant Gaussian-type orbitals

The concept of the EFV GTO basis sets originated from the widespread use of Gaussian
functions in molecular calculations [18, 19]. In spite of a rather successful prediction of
molecular energies, the standard Gaussian basis sets [20, 21] are known to be quite ineffi-
cient in the case of molecular electric properties [9, 22-24}. Naturally, this deficiency of
the standard GTO bases can be remedied by the appropriate extension and perturbation-
directed selection of the Gaussian orbitals [25]. However, this kind of approach leads
immediately to a substantial increase of the overall dimension of the basis set and limits
the size of systems which can be considered in this way [23, 24]. Since the total atomic
and molecular energy can be computed with a reasonable accuracy using medium-size
Gaussian bases, e. g., double-dzeta quality GTO sets [26], it might have been expected
that the Gaussian bases of a similar size but explicitly perturbation-dependent should
considerably improve the quality of the calculated electric properties.

As already pointed out, the success of variable bases in the case of magnetic field
perturbations is mainly due to the appropriate, physically guided choice of the explicit
perturbation dependence of the basis functions [4]. Unfortunately, there is nothing like
the gauge invariance principle [4] in the case of the external electric field perturbation and
in order to devise a resonable analytic form of the EFV GTO’s one should rather consider
some inherent features of the Gaussian functions. Each primitive Gaussian orbital can be
in principle regarded as an eigenfunction of the harmonic oscillator problem and thus the
solution of the corresponding electric field perturbed harmonic oscillator equation is also
known. This simple observation was chosen as a basic principle for the construction of
the EFV GTO basis set [14].

Suppose that the field-independent problem leading to the zeroth-order energy E © was
solved in some finite-dimensional Gaussian basis set {x1(r; Ry, 01), X2(¥; Rz, 02), --os
%m(r; Ryp, aar)} where r denotes the electron coordinate measured with respect to the i-th
GTO origin R; and «; is the corresponding orbital exponent. For each GTO treated as the
eigensolution of a separate harmonic oscillator the external electric field F would introduce
the origin shift given by

1

AR, = — F. 4
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In order to account for the differences between a set of independent harmonic oscillators
and a given atomic or molecular problem it was proposed [14] to introduce some additional
scale factor 1. Thus, the EFV GTO basis set was generated from the original one in the
following way

{ni(r; RA0), )} = {x:(r; R(F), o;)} (5)

where

R(F) = R(0)+ &/—I?F. (6)

There is a plenty of plausible arguments in favour of the anticipated electric-field
dependence of the basis functions. First of all one should notice that the electric field induced
distortion of a given orbital is inherently scaled by its exponent. This physically under-
standable form of the GTO origin shift is expected to play the most important réle during
the field induced deformation of the original basis functions. One can also infer, that
the scale factor 4, though possibly different from the harmonic oscillator value of 0.25,
should be fairly constant for the GTO bases of similar quality. A more detailed discussion
of some important features of the EFV GTO basis sets can be found in Refs. [14, 16].

It is also interesting to compare the present form of the electric field dependent
orbitals with that proposed by Moccia [13]. According to Moccia, the field-dependent
set is formed from the original one by multiplying each orbital by a common exponential
factor of the form exp(kr - F), where k is an additional, variationally determined param-
eter [13]. In contrast to the present form of EVF GTO’s, this parameter has to take
into account also the differences in the polarization of separate orbitals, i. e., the effects
due to different orbital exponents. This is more or less automatically accounted for by
Eq. (6). Thus, one can conclude that Moccia’s electric field dependent bases will be less
flexible than the present ones. This conclusion is further supported by a comparison of
the corresponding numerical data presented in Section 5. It is also worth attention that
Moccia’s proposal represents simply the sc-called multiplicative approximation for the
perturbed orbitals [27, 28].

The scale factor A introduced by Eq. (6) can be regarded as a variation parameter
which is used to select the most appropriate EFV GTO set from the infinite number of
field-dependent sets constructed according to Eqgs. (5) and (6). It can be shown [17] that the
n-th order perturbed energy E® is exactly given by the n-th degree polynom in 4,

E® = ™04 1Dy g jrem, ™

Thus in even orders of the perturbation theory [29] one can use the minimum condition
for Eq. (7) as a source of the best variationally determined value of the scale factor. As
regards the choice of the scale factor for odd orders in the perturbation expansion of the
field-dependent energy (1) no a priori criterion is available [29].

In the case of second-order perturbed energies Eg. (7) represents a parabolic function
of the scale parameter. The corresponding expansion coefficients can be determined either
by the analytic differentiation of the total energy formula (1) or by the appropriate finite
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difference approach. The latter technique was employed in the calculation of electric dipole
polarizabilities and was generally found to be quite satisfactory [15, 16]. However, the
use of purely numerical techniques can lead to the violation of some basic assumptions
concerning the form of the electric field dependence of the basis set functions. Since the
numerical approach seems to be computationally more convenient than the analytic per-
turbation theory [17] involving the calculation of the first- and second-order derivatives
of all molecular integrals, this problem deserves a rather careful consideration. Some
remarks concerning a comparison of the so-called analytic approaches to the perturbation
theory with purely numerical methods are presented in the next section.

It is also worth attention that the EFV GTO bases considered in the present section
were found extremely efficient in the calculation of molecular electric dipole polarizabilities
[14-16]. Moreover, if the variationally determined scale factor is assumed to be the same
for both the second- and the first-order perturbed energies, a simultaneous improvement
of the computed molecular dipole moments is achieved [15, 16]. It is worth attention that
only the second-order energy expression of the form (7) provides a possibility of the varia-
tion optimization of the scale factor.

According to our previously reported results [14-17] one can conclude that the
proposed form of the external electric field dependence of the GTO bases is principally
correct and properly accounts for the electric field induced distortion of the electron
density distribution in atoms and molecules. This opens the possibility of reliable calcula-
tions of atomic and molecular electric properties for quite sizable systems with compara-
tively small sets of Gaussian basis functions.

3. Some computational aspects of the perturbation theory using perturbation-dependent
functions

As already pointed out the scale parameter optimization for the even-order perturbed
energies can be carried out either analytically or numerically [17]. The numerical approach,
though perhaps less elegant, is undoubtedly more convenient from the computational
point of view. The analytic calculation of the expansion coefficients entering Eq. (7)
requirss the calculation of the derivatives of all molecular integrals up to a given n-th
order. Even in the case of the second-order energies this procedure is quite tedious and
time consuming [9]. However, at least in the case of the perturbation dependence of the
basis set functions as given by Eq. (6) the numerical approach may not be equivalent to
the analytic procedure and this question seems to deserve a rather careful consider-
ation.

According to what is called here the numerical approach to the field-dependent basis
set perturbation theory the total field- and A-dependent energy E(4, F) is computed at
several selected values of the field strength and A. Then, for each value of A the appropriate
n-th order energy E®(2) is calculated using the numerical differentiation of E(J, F) with

1 The author would like to acknowledge a helpful and stlmulatmg correspondence concerning this
problem with Dr. S. T. Epstein.
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respect to the field strergth. Finally, the n-th order energy (n even) is fitted to the n-th
degree polynom: and the best value of the scale parameter A is determined frem the cor-
responding minimum condition.

In contrast to some other finite-field perturbation approaches [30, 31] the perturba-
tion parameter, i. e., the field strength, enters both the perturbed hamiltonian of a given
system and the basis set. Furthermore, the basis set furctions depend ia fact on the assumed
bilinear term AF. This term can be considered as some common variation parameter, say
a, for the external electric field directed along the u-th axis of the coordinate system.
If this parameter is optimized variationally for the total field dependent energy E(a,, F,),
then its power series expansion in terms of F, will have in general the following form

a, = al(lo)+af£1)F,,+ 8

n

Thereisno reason that the first term in this expansion should vanish for the unperturbed
problem in the case of rather peor GTO basis sets. Nevertheless, its presence will only be
manifested in the pvmericel appreach. Fer the arelytic perturbation scheme [17] all
coefficients in (8) except for al) = A are assumed to vanish. It is practically impessible to
intrcduce this constrairt durirg the numeri caldetermination of the cptimal value of the
scale factor A.

Thus, it follows that for the numerical approach it is Gesirable to check first the field-
indeperdent energy of a given system correspords to the minimum with respect to a,, treated
as a field-independent variation paremeter. Otherwise a}) may considerably influence the
determined value of 4. However, one can expect that for relatively good field independent
GTO bases this parameter should be practically negligible. This conclusion follows from
the observation that aLO) will shift the origirs of all GTO’s in the same direction and there-
fore is rather unlikely to produce a considerable energy gain. Furthermore a” has to
vanish in all calculations performed either for centrosymmetric systems or at optimized
molecular geometries.

So far only one example of the mentioned difference between the analytic and the
numerical approach was encountered during our calculations [32]. The optimized value
of A for the parallel ccmponent of the electric dipole polarizability of HCN computed
using 4-31G basis set [33] and experimental molecular energy turned out 1o be quite large
and negative [32]. This result was not only completely different from the optimized A
values computed for a number of other molecules [14-16] but also apparently contradicted
the physical picture [14] attached to the meaning of the orbital origin shift (6) induced by
the external electric field directed along the molecular axis. On checking the field-irde-
pendent problem against the minimum with respect to a,, it was found that a(” is consider-
ably different for its zeroth value assumed in the analytic approach. The repeated calcula-
tions of the polarizabiliy tensor of HCN with a{” included already in the unperturbed
GTO basis set went smoothly and led to a small positive value of the optimized scale
factor A.

This example, though hopefully rather exceptional, shcws that the perturbation cal-
culations using the EFV GTO bases of relatively poor quality should be performed with
some care. It should be also pointed out that a similar feature of perturbation calculations
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using external field dependent bases was observed by Eaves and Epstein [34, 35]. More-
over, the same kind of numerical instabilities may also occur in the case of the electric-
field-variant STO bases discussed in the next section.

4. Electric-field-variant Slater-type orbitals

In spite of the overwhelming popularity of the Gaussian basis sets the Slater-type
orbitals are still frequently in use in both atomic and molecular calculations. The STO
bases are known to be considerably more efficient than the GTO functions. Thus a much
shorter STO expansion can provide substantially better approximation to the energy of
a given system. The perturbation calculations using ordinary STO (ficld-independent)
basis sets suffer from the incompleteness of finite dimensional functional spaces in the
same way as in the case of the GTO bases [1]. For instance, the polarizability of the water
molecule calculated by using the perturbed self-consistent field (SCF) approach and rela-
tively large STO basis set [36] is ouly slightly better than that obtained within similar
calculations employing GTO’s [22]. Both they are considerably different from the expected
Hartree-Fock limit [25]. Thus, an explicit introduction of the external electric field depend-
ence into the STO bases can be as useful as in the case of the GTO basis sets. It is also
worth attention that for very small GTO bases the EFV GTO technique may not be as
efficient as for the corresponding field-variant STO’s.

In principle the field-induced distortion of STO’s can be guessed from the exact
solutions for the hydrogen atom embedded in the external static homogeneous electric
field [37]. However, this approach will not introduce in a natural way any additional
variation parameter like the scale factor / appearing in the definition of the EFV GTO’s.
The presence of this variation parameter in the EFV GTO bases was found to be very
useful and the same can be expected for the EFV STO basis sets. Obviously, the choice of
the variable basis set guided by the corresponding solutions for the hydrogen atom will
result ip the accurate values of electric properties for one-electron atomic systems. How-
ever, the missing possibility of an additional optimizatior. of a given variable basis set
is not the most convenient feature in the case of many-electron systems. Furthermore,
using the hydrogen-like electric field dependent orbitals will practically limit the cor-
responding perturbation schemes to the consideration of one-centre problems.

The approach we are going to introduce in the present paper is based on the possibility
of the so-called Gaussian transform representation of STO’s [38]. Any STO can be easily
derived [39] from the following integral transform of its exponential part

2

exp (—{|r—R]) = Z——E/EJS'W eXp(— i )exp (—slr—R|*)ds )
[+

S

2 For instance, a single optimized GTO approximation for the 1s orbital of the hydrogen atom [20]
does not lead to the quadratic A-dependence of the EFV GTO polarizability. Because of some intrinsic
cancellations in the field-dependent energy expression obtained with a single EFV GTO, the resulting
counterpart of Eq. (7) for the hydrogen atom polarizability is linear in A
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where { denotes the orbital exponent and R is, as previously, the orbital origin position.
It follows from Eq. (9) that each STO can be expanded into an infinite series of Gaussians.
Thus, for each GTO under the integral sign one can use the same assumptions which led
to the EFV GTO bases.

According to this proposal the electric-field-variant STO basis set can be derived
from a given field-independent set by using the following field-dependent function

fr; R, O =

J'sl"sl2 exp (— —C—) exp (—s|r— R(F)|})ds (10)
2 4s
o]

lel

where R(F) is given by
A
R(F) = R(0)-+ s_EF (11)

and the scale parameter A has the same meaning as for the EFV GTO’s. Since Eq. (10)
is based on our previous experience with the variable Gaussian bases, a major part of
the former discussion [14-17] and additional remarks presented in Section 2 of this paper
are directly applicable in the case of the EFV STO’s. Thus, the field-variant STO’s derived
according to Eq. (10) correspond to the same picture of the perturbation effects exerted
on the original basis set. The EFV STO’s are also weighted by the appropriate Gaussian
exponents and the scale parameter 4 should merely reflect the differences between the
exact hamiltonian of a given system and its projected part [40] corresponding to some
approximate wave function. Moreover, one should observe that the Gaussian transform
representation of EFV STO’s (10) indirectly accounts for the effect of GTO’s with low
orbital exponents. These orbitals were found rather important in our previous study [16}
and the available finite Gaussian expansions of STO’s [33, 41] usually do not possess this
significant feature.

The accuracy of the EFV STO perturbation approach can be easily checked by the
calcylation of the hydrogen atom polarizability. For the ground state perturbafio,n the
second-order energy as a function of the scale parameter 4 is given by

E®(}) = 884228 - (12)

and its minimum value equals —2.2273 a. u. being very close to the exact value of —2.25
a.u. [42]. On expanding the field-dependent 1s hydrogen orbital into a power series in the
external field strength one can obtain the explicit formulae for the n-th order perturbed
orbitals. All of them are naturally different from the corresponding exact solutions of the
perturbation theory equations. However, due to the presence of the variation parameter A
these differences are relatively unimportant for the perturbed energies.

The present example clearly verifies the correctness of our assumptions concerning
the analytic form of the EFV STO’s. Some further numerical illustration of the applica-
bility of these orbitals to the calculation of atomic dipole polarizabilities within the
so-called coupled Hartree-Fock (CHF) perturbation theory [43-45] is given in the next
section.
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" 5. Static dipole polarizabilities of two-electron atomic systems using EFV STO’s

The results reported in this section refer to the one-electron approximation for many
electron systems. At this level the corresponding exact formulation of the perturbation
theory is known as the coupled Hartree-Fock approach. The CHF perturbation theory
provides the Hartree-Fock accuracy of the computed perturbed energies in the so-called
Hartree-Fock limit of the unperturbed problem solution.

In the case of variable basis sets the CHF scheme needs some extension [3; 4].
Recently, a useful density matrix formulation of the CHF perturbation theory has been
given [17] and the formulae derived in this paper are utilized in the present case. For
two-electron atomic systems considered in this section the corresponding second-order
energy formula can be simplified to

E(Z)(l) =2Tr {f(l)_ h(O)R(O)S(2)+% G(R(O), g(Z))}R(O) (13)
where for the external electric field F = (0, 0, F) applied along the z axis and the EFV STO
basis set {y1(F), x2(F), ..., xuF)} the matrices entering Eq. (13) are defined by

Se = <X1(F) 12s(F)> (14)

- aF2

= L =1 a— L _Fa (15)
6F2 “ 2 r b

62
g = 7 2K P B I 21025 F)x2; F)Y

= {1l )25 F) [715 1125 F)x;;(2 F)>} (16)
GR?, g™, =Y Y RSP, Qa7

and
b = {0 —3 4— — !xa(0)> L (18)

R is the deusity operator representation in the unperturbed basis set {y,(0)} and Z
denotes the nuclear charge. In comparison with a rather complicated general second-
order energy formula [17] the present simplification is merely achieved by a natural limita~
tion of the unperturbed basis set to s-type STO’s. 1t should be also pointed out that all
derjvatives given by Egs. (14)-(16) implicitly depend on the scale factor A through the
EFV STO basis functions.

In order to check the relative effectiveness of the EFV STO perturbation approach
a series of the helium atom polarizability calculations was performed using the SCF wave
functions of different accuracy. The results of these calculations are shown in Table I
together with our previous data obtained using the cotresponding EFV GTO’s [17].
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TABLE 1

Helium atom polarizability calculations using electric-field-variant orbital bases. (all entries in a. u.)

EFV STO basis set? EFV GTO basis set?

Basis set | Unperturbed Polar- | Optimized | Basis set | Unperturbed | Polar- Optimed
dimension | SCF energy izability | value of | dimension | SCF eneregy | izability | value of
M ESs o A | M EF o A

1 —2.8476563 1.1226 0.1626 2 —2.747066 ‘ 0.8834 0.1752
2 —2.8616700 1.3210 0.1351 3 —2.835680 1.¢:886 0.1585
4 —2.8616785 1.3193 0.1332 5 —2.859896 1.2720 0.1428
5 —2.8616799 1.3212 0.1340 8 —2.861625 ‘ 1.3177 0.1360
10 —2.861673 1.3214 0.1348
HF limit | —2.8616800 1.32°¢ — | ‘ |

a Basis set functions and SCF orbitals taken from Ref. [46]. ® Taken from Ref. [17]. © Taken from
Ref. [48].

For the sake of a simultaneous comparison of the accuracy of the zeroth-order SCF
wave functions and its influence on the calculated polarizability values also the unper-
turbed SCF energies E{Q are included in Table I. The present results clearly indicate that
the EFV STO bases are far more effective than the EFV GTO bases. This observation
corresponds to a much faster convergence of the STO expansions for the unperturbed
system than in the case of GTO’s. It is worth attention that the result for 2 EFV STO
basis set is practically as good as that obtained previously with 10 EFV GTO’s. Thus,
although the integrals involving STO’s are generally more difficult than those for the
GTO basis sets, the EFV STO bases of a comparable quality are much shorter. This fact
may define the usefulness of the EFV STO basis sets in the calculation of molecular
electric properties.

TABLE II
Polarizabilities of two-electron atomic systems (in a. u.)
a
. EFV STO results Reference CHF
Atom or ion - — resulis P
o Optimized 4
He 1.3193 0.1332 ! 1.3227
Li+ 0.1889 0.1424 0.1896
Be?+ 0.0514 0.1453 0.0519
B3+ 0.0192 0.1423 0.0196
C4++ 0.0089 0.1502 0.0089
N5+ 0.0046 0.1516 0.0046

# All EFV STO calculations correspond to the 4 STO basis set of Clementi [46]. ® Taken from
Ref. [47].
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A further illustration of the efficiency of the EFV STO bases is given by the data of
Table 11. In-this Table the results of present calculation ucing basis set of 4 s-type Slater
orbitals [46] are compared with near-Hartree-Fock CHF data of Epstein and Johnson
[47]. For the considered series of two-electron systems He, Li*, Be?t, B3+, C*+ and N°+
the present results obtained using the EFV STO CHF approach accompanied. by the opti-
mization of the variation parameter A also represent near-HF accuracy.

Tt should: be also pointed out that the optimized value of the scale parameter Ais
fairly independent of both the basis set quality and the nuclear charge. A similar behaviour
of 2 has already been noticed for the EFV GTO bases [14-16}], though the corresponding
numerical values of this parameter were generally smaller than in the present case [15, 16].

Finally, our results for the helium atom polarizability can be compared with the
calculations by Moccia [13]. The polarizability value obtained by Moccia ay, = —2E @ —
= 1.1 a. u. was calculated using the EFV STO basis set of 3 s-type functions. The electric
field, according to Moccia’s proposal [13] was included by multiplying each orbital by
the exponential factor exp(kF - ). According to the data of Table I Moccia’s value
roughly corresponds to our calculations with minimum STO basis set and is sub-
stantially smaller than the expected HF limit. Using the basis set of 2 STO’s within the
present approach one already reaches quite satisfactory accuracy of the computed He
atom polarizability. Thus, the form of the electric field dependence of the basis set func-
tions introduced by Moccia [13] does not seem to be especially efficient.

6. Conclusions. Some proposals concerning variable bases for the calculation of atomic
and molecular properties ’

The results presented in the previous section clearly show that the EFV STO bases
should be generally much more efficient than the corresponding GTO sets. The use of the
EFV STO functions for atomic systems does not represent any substantial difficulty since
all the required integrals can be done analytically. However, the atomic systems are not
as interesting as molecules. In fact there is a plenty of numerical data for the polarizability
of atoms and ions and the present calculations do not provide new numerical values in
this respect. The main reason for these calculations was to exemplify the effectiveness of
the proposed field-dependent basis set. The most significant feature of the EFV STO bases
would be their relatively easy implementation in molecular calculations.

As already pointed out, the EFV STO bases providing a reasonable accuracy of the
computed atomic ‘polarizabilities are much shorter than the corresporiding EFV GTO
bases. For many-electron system the reduction of the basis set dimension by a factor of 5
(see Table I) would mean that the number of two-electron integrals to be computed is
roughly reduced by a factor of 5% This is a rather substantial gain even if the integrals
over STO’s are much more difficult than the integrals involving GTO’s. Moreover, the
use of the Gaussian transform technique [38, 39] which is completely natural in the ‘case
of the proposed form of EFV STO’s (10), should considerably facilitate the calculation of
molecular integrals. One:can therefore conclude that the calculations using the EFV.
STO basis sets are completely within the reach of the present-day computational techrjique,§
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and facilities. Similarly as in the case of the EFV GTO bases the corresponding calcu-
lations can be performed either completely numerically or by using the so-called analytic
approach. There is also a possibility of a mixed computational scheme [17].

Let us also notice that the proposed EFV. STO approach can be very useful in the
calculation of the correlation corrections to atomic electric properties. Another pos-
sible application of EFV STO’s can be the calculation of higher order atomic polariz-
abilities. The EFV GTO calculations of the second-order hyperpolarizability of He [17]
proved to be quite successful and even better results can be expected for the EFV STO
basis set.

A considerable success and efficiency of the EFV GTO and STO bases in the calcula-
tion of atomic and molecular electric prdperties should stimulate a search for other per-
turbation-dependent bases with the explicit perturbation-dependence following from
similar considerations. Let us point out that the perturbed harmonic oscillator equation
can be exactly solved for a number of interesting perturbation operators. Among them
one should pay a rather particular attention to xﬁ-type terms. These operators will cor-
respond for instance to the quadrupole field perturbation or to the perturbation by the
external magnetic field. Including their effect in the basis set would mean a change of
the orbital exponents. Introducing the appropriate variable bases could facilitate the cal-
culation of quite accurate values of electric quadrupole polarizabilities or diamagnetic sus-
ceptibilities. In the latier case the external magnetic field dependence of the basis set func-
tions is also partly accounted for by the so-called gauge factors. These, however, lead
merely to the improvement of the paramagnetic part of the susceptibility tensor [4].

One can conclude that the approach discussed in the present paper for the electric
field perturbation can be easily extended for several other problems. The, most important
feature of the variable basis set methods is that they provide a very efficient way of circum-
venting the incompleteness problems in perturbation calculations of atomic and molecular
properties.
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