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Equations have been developed to study the coupling between large amplitude vibration
(LAYV) and the remaining harmonic vibrations in a polyatomic molecule. The method has
been used to interpret the vibrational spectrum of disilyl ether where the potential of the
SiOSi bending mode has .two symmetric minima and the assumed barrier to inversion is
125 cm?,

1. Introduction

The vibrational spectrum of disilyl ether has been a subject of interest for a long
time [1-5]. The most comprehensive study dealing with this problem has been performed
by McKean in 1970 [6]. With all these investigations there are still fragments of the spectrum
which have not been interpreted. ‘

Hitherto, the vibrational analysis of the spectrum of disilyl ether has been carried out
with the use of the standard methods of the theory of normal vibrations neglecting the
interactions between the modes of different frequencies. The influence of the SiOSi bending
vibration on the other vibrations of a molecule, suggested by Thorson and Nakagawa [7],
has not yet been studied systematically.

Our earlier studies of the influence of the large amplitude vibration (further called
LAY) on the remaining harmonic modes of a molecular system have shown that the
interactions causing the specific anharmonicity appeared [8], which is seen in the spectrum
as a shift and splitting of the absorption bands.

The purpose of the present paper is to find the approximate potential describing the
skeletal bending mode of disilyl ether giving the spectrum in the far infrared which agrees
with the experimental one, and next to analyse the other bands in the i. r. spectrum of
(SiH3),0, which permits one to calculate the interaction constants between LAV and the
remaining vibrations. This treatment allows .us to interpret uniformly many fragments
of the spectrum which are not clear up to now. .
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** Dedicated to Professor Kazimierz Guminski on the occasion of his 70-th birthday.
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Grunwaldzka 6, 60-780 Poznan, Poland.
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2. Theoretical

The interactions between different vibrations in a molecule have been discussed
using the following assumptions:

(¢) there is only one vibration of the LAV type in the molecular system being con-
sidered (a more detailed discussion of this problem has been given in [8]).

(i) the LAV frequency is lower than those of the harmonic vibrations, hence the
adiabatic approximation can be used to study the influence of the LAV on the harmonic
vibrations.

The vibrational Hamiltonian has the form

T(Q)+T(2)+V(2)+1 Ki2) (i~ Q(2))’, o

whete z, Q; describe the LAV and the harmonic vibrations, respectively, T is the kinetic
energy operator, V(z) — the LAV potential having two symmetric. minima, K;, Q2 — the
force constant and the equilibrium position of the i-th normal vibration, both depending
on z, respectively.

In the crude adiabatic approximation the wave function of the Hamiltonian given
by Eq. (1) may be written in the form

1
vz
where o4 ,(2), o5 , (2) are the wave functions of LAV localized near the minima at the point
+2% and — 20, respectively, p is a quantum number of the LAV, ¥.(Q)) is a wave function
of a normal vibration which exists in two forms for a molecule described by ¥(K = 4, B).

Now, the case in which potential V{(z) is symmetric function of z will be discussed.

The solution of the Schrédinger equation with a symmetric potential is well known and
may be written in the form [9]

[T@+ V(@)@ = Epetpu@s  [T@+V @Dt () = Epety (2, ()

where E, . is the eigenenergy of a symmetric eigenstate, E,_ is the eigenenergy of an anti-
symmetric eigenstate. .

In Eq. (2) ay(2) is the function localised near -+z,; using the properties of a,_(z)
and «,.(2) (cf. [9]) one can get [10]

Y(Q: z) = (04, (D) P (Q0) + g, (2) P 5(Q1)), )

1
oy,,(2) = 7 (@ (D +2,-(2)). ©)
The function ap(z) localized near —z, can be expressed likewise
1
p,(2) = Np (2 (2) — 2, (2)). %

The multiplication of the Schrédinger equation with the Hamiltonian given by Eq. (1)
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and the wave function from Eq. (2) by a,,(z) and another }nultiplication by the a,_(z)
and further integration over z leads to the following set of equations:

[T@Q)+ Up+,p+(Qi)]¢+(Qi) +Ups,,-(Q)P7(Q) = E®T(Q), (6a)
[TQ)+U,- ,-(Q)]27(Q)+U,_ ,+(@)P(Q) = E9™(Q), (6b)
where
1
@+(Q;) = 75 (Y Q)+ P5(0)), (7a)
7(Q) = \/— (¥ Q)—¥5(0)), (7b)
U Q) = <o(2) | 3 Ki(Z) (Qi—02(2))*lo(2)). (70)

Since the both forms of a molecular system 4 and B are symmetric the expression K; i(2)
(Q;— Q2(2))? is the symmetric function of z, too. Hence, the effective interaction operators

U, ,— and U,_ ,,. vanish due to the symmetry.
Egs. (6a, b) can be written uniformly
[T(@)+3 <o, |Ki(2) (Qi—Q?(Z))zl%>+Ep]¢s(Qi) = E9Y(Q), ®

where p goes through the values of p*t and p~, #%(Q)) is a set of states &+(Q;) and
@(Q)), respectively.

To solve Eq. (8) the explicit form of an effective potential U »o(Q) is necessary.
We can write :

where
Kf = <alei(Z) |“p>: (103')
L} = (| K(2)00(2) |, (10b)
D} = 4 <o, iK(2) (Q7(2))|t,- (10c)
Using then a displaced coordinate
LF
= Q;— X’ 11)
one can write the Eq. (8) in the form
(T(a)+% KPqi + WPD(q)) = E&(q), (12)
where
()
WP =D{-}—< +E, (13)

K,

i
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The solution of the Eq. (12) leads to the following e¢igenvalues:

E = hol(n+1)+ W7, (14a)

where
of = (KIm'?, ‘ (14b)

and m is the reduced mass of the i-th normal vibration.

Although the harmonic character of the normal vibration has been kept, there are
two important differences when compared to a system where the LAV does not exist:
(i) the equilibrium position of a normal vibration is displaced (see (Eq. (11)),

(i) the frequency of a normal vibration depends on a state of LAV (see Egs. (14b)
and (10)).

Now the problem emerges of an apprecmtlon of the order of magnitude calculations.
of both effects. This can be evaluated by the comparison of the theoretical spectrum with
the experimental one.

The discussion of the selectlon rules for molecules with LAYV leads to the conclusion
that the transitions |n, p) <> |[nF 1, p> or |n, pd> < |n,p F 1) are the moqt,111ten51ve 111
(n, p are the quantum numbers of harmonic vibration and LAYV respectively).

Excitations of the harmonic vibrations will be discussed further.

During these excitations the LAV stdte remains unchanged and the term W?2 in
Eq. (14a) is the same in the ground and excited states of the molecule. Hence the displace-
ment of the equilibrium position does not affect the transition energy. ‘

" The influence of LAV on the normal vibration force constant can be studied separately.
For exact calculations the functional dependence K;(z) is needed.

In the approximate calculations this dependence can be described in the more simple

form:

K{2) = ki+3% 2%, (15a)
where

" (K,
G=\—73]> k; = K0). (15b)
0z° /g

Therefore, the effective force constant of the i-th normal vibration of a molecule in the
p-th LAV state is

K} = kit x|zl (16}

The value of the constant ¢; may be considered as a measure of the interaction of the i-th
normal vibration with LAYV. Introducing the Eq. (16) into Eq. (14b), expanding the ex-
pression in a series and retaining only terms linear in c¢;/k;, one gets the approximate
dependence of the frequency of the normal vibration on the LAV state

0f = R+l ), (172)
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where

C;

fi=degs of = Gafmy!” (b

Y

From Egs. (14a), (17a) one can obtain the energy of the transition |n, p)> <> [nF1, p) :
AE = hw?‘(1+fi:<ozp_l_22|ocp>). : (18)

3. Application to the disilyl ether

A molecule of the disilyl ether satisfies the above mentioned assumptions. The
nonlinearity of this molecule was suggested by McKean [4] and Carl and Pitzer [5]
and confirmed later by an electron diffraction study of the vapour, which gave
a Si—O—Si angle of 144.1F0.9 [12]. Due to the large value of this angle the. potential
of the bending vibration has two symmetric minima. Such a model of the bendmg vibration
was studied by Thorson and Nakagawa [7] and experimentally supported by the works.
of Aronson et al. [2, 3].

In the former, the effort’ was undertaken to interpret the complex structure of the
disilyl ether ir. spectrum in the regions of SiO stretching modes: antisymmetric near
1105 cm—! and symmetric near 606 cm—L. But, neither the origin of the 1222 cm™! nor
593 cm™! bands was explained. _

The following characteristic features of the ir. spectrum of the disilyl ether have
been distinguished up to now [2-6, 15]:

1. Three bands are observed in a region of the SiO symmetrlc stretching mode at
9 K: 606 6 cm™! of the lower intensity and 595.3, 593.3 cm~! of higher intensity. No
bands are observed at room temperature.

2. At room temperature the broad asymmetrlc band attrlbuted to the SiO anti-
symmetric stretching mode is observed near 1105 emt. At lower temperature (96 K)
this band becomes sharper and shifts to 1080 cmt, '

3. The broad band of low intensity near 1222 cm~ which appears only in a gas
phase is interpreted by McKean [4] as a combination tone \fslo(asym)+26sloSl but even
the author himself stressed that the similar line in the spectrum of the silicon crystal
containing oxygen impurities is interpreted as a transition from the excited levels of
LAYV [13, 14]. , ‘ » »

" 4. The broad band of low intensity near 68 cm~* observed in a gas phase is assigned
as SiOSi bending mode. This band does not change distinctly during the deuteration [3].
In the spectrum of a solid state at 75 K a few bands of different intensity between 75 and
106 cm—! [15) are observed.

The aim of the paper is to show that all the above mentioned characteristic features
of the (SiHj;),0 i.r. spectrum can be interpreted on the basis of the interaction of LAV
with the remaining vibrations of the molecule,

Eq. (18) is a basic to our analysis. Its numerical value can be obtamed when the
wave functions of LAV is known. In ordef to obtain the wavefunctions it is supp_osed.that



258

the LAV potential is given by a two-parameter polynominal function of the form
V(z) = —Az?>+Bz4, 19

where A4, B are constants which depend on the barrier height V3, and the distance d between
minima.

Si

z=r cos(ts)

Fig. 1. Large amplitude vibration coordinate z used in (SiH3),0

Fig. 1 shows the LAV coordinate which was chosen in the calculations, performed
numerically by the standard method of solving the Schrédinger equation with double
minimum potential [16].

The distance between minima of the LAV was taken from the geometry of (SiH;),0
[12], which gave d = 1.0072 A. ,

The reduced mass for the bending vibration was calculated under the assumption
that the mass of the silyl group was concentrated at the silicon atom. It gave the values
12.72 a.u. and 12.95 a.u. for (SiH;),'%0 and (SiDj), 1°0, respectively.

It should be pointed out that the potential barrier for the bending mode is low, which
is in accordance with McKean’s paper [6]. It is caused not only by the large value of
the SiOSi angle but mainly by the presence of free electron pairs on oxygen which
may overlap with empty 3 d orbitals of the silicon atoms. Thus the inversion of the molecule
connected with a change of the hybridization is facilitated. A similar phenomenon is
well known for nitrogen compounds [18].

The analysis of the complex structure of bands ascribed to stretching SiO vibrations
was carried out with the use of Eq. (18). The constants w? and f; were calculated so as to
fit the experimental spectrum. The intensities corresponding to the different states a, in
Eq. (18) were calculated on the base of Crowford’s [17] formula, with an additional assump-

TABLE 1
Vibrational frequencies, constants of coupling between LAV and harmonic modes, calculated from Eq. (21)
RN ]
Mod Vi o; ki ci fi
- (em) (em™) (mdyn A=) | (mdyn A-%) (A-2)

Solid

vsio(sym) 595.3 621.5 7.1 —5.5 —0.19

vsio(asym) 1080.0 1116.7 4.7 -2.8 —0.15
Gas

vsiolasym) 1105.0 1142.5 4.9 —2.8 —-0.14
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tion that the dipole transition moments were independent of the LAV state of a molecule.
In this approximation the intensity of a transition depended only on the Boltzman factor
of the appropriate LAV level at a temperature T.

The values of constants taken to the calculations are listed in Table 1. Comparing
with a standard vibrational analysis a new parameter ¢; appears, that describing the
interaction between the LAV and the i-th normal vibration. The fourth order constants Kj;33
which describe the interaction between bending and stretching modes were estimated
for CO, to be equal to 0.8 milidyne A [19]. The larger values of ¢; in (SiH;3),0 may be
explained by the stronger anharmonicity of a bending mode potential in this molecule
than in CO,.

4. Discussion

SiO symmetric stretching mode

1t is assumed that the three bands in a region 600 cm—" are due to the SiO symmetric
stretching mode coupled with LAV. The comparison of the theoretical and experimental [6]
spectra at 96 K is presented in Fig. 2. A few lines in the theoretical spectrum results from

600 ' 590 cm

Fig. 2. Comparison of the theoretical and experimental [6] infrared spectrum due to vsio(sym) in (SiHs),0
at 96 K

a change in the symmetry of a molecule excited to the LAYV states lying over the potential
barrier. In these states (SiH3),0 has a center of symmetry and that is the reason for the
fully symmetric vibration being inactive in the infrared. 1t is also the reason why the bands
near 600 cm—! are not observed in a gas phase. At higher temperatures the states lying
over the barrier are strongly occupied and at the same time the bands become broader
so the weak broad absorption bands cannot be; distinguished from the background.
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SlO antrsymmetrlc stretchlng mode

ThlS mode is infrared act1ve for any. symmetry of the disilyl ether molecule and 80
the numerous bands due to the coupling with LAYV give broad asymmetrlc band (Fig. 3).
In accordance w1th the experimental results [4, 6, 15] this band becomes broader ata hrgher
temperature (Fig. 3)

T,
| “

a) S T b)

1160 1080 pr=4 140 1060

Fig. 3. Comparison of the theoretical and experimental infrared spectrum due to vsio(asym) in (SiH3),O
at 96 K (experimental from [6]) and 293 K [15]

The 1222 cm~ ‘band |

The origin of this band is still obscure. It may be interpreted as a combination band
of a “hot band” type vs,o(asym)+55,os,(1+ —27) = 1105+119 = 1224 ecm™. It would
explain why this band is observed i in a gas phase only, because ‘one of the transitions
would take place from the excited state 1t is however still difficult to say why the following
combination bands are not observed vs;o(asym) + 8g;05:(0+ — 1) = 1105490 = 1195 cm™t
or vg;o(asym)+dg;os(0~ = 1+) = 1105+ 69 = 1174 cm~. The values of 69 cm~!, 90 cm™!
and 119 cm~! were calculated nurnerlcally using the solution of the LAV eigenproblem
with the potential functjon given by Eq. (19) and barrier to inversion equal to
125 cm™!, as energy differences between energy levels cited above.

I (JM.K.) would like to express my gratitude to Professor K. Gumifski for his
significant influence on my scientific development, during my stay at the Jagellonian
University. .
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