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The optimalization procedure introduced into the perturbation theory of liquids by
Andersen, Chandler and Weeks (ACW) is discussed. It is found that the original ACW
variational condition (C-1) is consistent only for potentials possessing infinitely hard repulsive
core. For realistic potentials, variation of the perturbation W(r) at small distances must
be-accompanied by the appropriate variation in the reference potential, such that the whole
interaction (defining the considered physical system) remains invariant. Corrected varia-
tional condition (C-2) is found, and the calculations for the Lennard-Jones fluid are performed.
The correction influences the global properties of the system only slightly, but changes
significantly the shape of optimalized W(r) at small distances: W(r) calculated from C-2
is always attractive, whereas W(r) calculated from C-1 can be either attractive or repulsive.

1. Introduction

One of the best recent theories of simple liquids is the Andersen, Chandler, and Weeks
(ACW) version [1-7] of the perturbation theory, especially in its optimized form [6, 7].
The main advantage of the optimized ACW theory lies in the possibility of arbitrary
adjustment of the shape of perturbation interaction W(r) inside the repulsive region, the
latter playing the role of the reference (unperturbed) system. This property of the theory
is connected with the lack of some graphs [8] in the expansion, which results in turn
in appearance of the integrals containing only the functions of the perturbation inter-
action W(r).It is thus possible to choose arbitrarily the values of W(r) for small r, which
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fact is used in the optimalization of the theory. It has been argued [8, 9] that in unopti-
mized perturbation theories of this kind the balance between repulsive and attractive forces
is violated and that the ACW optimalization is equivalent to the indirect restoring of this
balance. The aim of this paper is to examine the ACW optimalization procedure from
such point of view.

The ACW perturbation theory is constructed as follows: the true intermolecular pair
potential ¥(r) is divided into the repulsive referénce potential V3(r) and the perturba’uon
wi(r)

V(r) = Vo(r)+ W(r), (LD
with
Vi)+e r <ry,
Vo(r) = { wy ,‘Z, (1.2)
r < 7o
1Y) = {V( r r >vr:),; (1-3)

where r, is the smallest distance at which V{(r) attains minimum, and, in the unoptimized
theory, e = —V(r = ro) is the depth of the potential well.

The perturbation theory requires the knowledge of the equation of state po = polo, T
and of the radial distribution function go(r) of the reference system. These quantities are
known with sufficient accuracy only for the hard-sphere fluid. Hence the choice (1.1)-(1.3)
of the reference system' can be practically realized exactly only for potentials V(r)
possessing the infinitely hard core, i. €., when ¥{(r) = oo for r < r,. For realistic potentials
with strongly repulsive but finite interactions at small distances, further approximations
are necessary, and ACW propose to approximate the reference pressure pg by the pressure
pus of the equivalent system of hard spheres of diameter d, and the radial distribution
function by

go(r) = "M yo(r) & &7V T yp(r; d) (1.4

with ygg(r; d) — appropriate part of the radial distribution function of the hard-sphere
fluid. The diameter d of equlva]ent hard spheres is to be calculated from Vo(r) by the
use of one of the proposed for this purpose relations (cf. Ref. [10]).

When the choice of the reference system is made it is applied to the graph representa-
tion of the virial expansion. The fragments of graphs containing only the reference inter-
actions are summed to lines representing pair distribution functions of the reference system.
The thermodynamic functions and the radial distribution function of the whole system are
approximated by sums of all appropriate ring or chain graphs, in which to every vertex
at most two lines are attached. In the ACW version there are two kinds of lines: one
representing go(r)—1 = ho(r), and the second containing only the perturbation W(r).
The ACW approximation may be now optimized by the change of the shape of W(r) for
¥ < ro. For this purpose, a variational criterion is needed, and ACW assume that the
best choice of W(r) is obtained from the condition of the minimalization of the ring contri-
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bution ag to the free energy. According to ACW, this.condition is written in the form

dag

—R _1r =
5oy kToC(r) =0 for r < d, (1.5)

where &(r) = — W(r)[kT, g is the number density, T — temperature, k — Boltzmann’s
constant, and C(r) denotes the chain contribution to the radial distribution function

8(r) = go(r) exp {C(r)}. (1.6)
ag and C(r) are

- 1 kT
ag = @kT Z o JdrCn-l(rW(r) = " e jdq{ln [1-P@]+P(g)}. (1.7
n=2

N S 1 —ig rpn
C@r) = nZl: Cr) = HZ; T que * TP (q)Go(q)

[ e P@
- G f dae™"" T Gola), 8)

where C,(r) denotes the contribution from all chains containing # lines, and
P(g) = E(@)Go(q), E(q) = [ dre™™ "d(p),

Go(g) = o+0* J dre™® Tgo(r) —1]. ‘ (1.9)

In the ACW optimalization procedure only the perturbation W(r) is changed.. The
reference system ¥(r) is kept constant, so that go(r), po, and the diameter d of the equiva-
lent hard-sphere system are determined by V,(r) given by Eq. (1.2) with & = — V(r = r,).
Now, such procedure is fully consistent only for the potentials ¥(r) containing infinitely
hard core. We shall show below that, when V(r) < oo for 0 < r < r,, the requirement
(1.5) of minimalization of ag.is not equivalent to the requirement of vanishing of the
chain function C(r). Bzsides, the natural physical condition of invariance of the true
potential ¥V{(r) —i. e., the requirement that we shall consider still the same physical
system — implies that the changes in W{r) must result in appropriate changes in Vo(r).
Corrections of this type to the ACW procedure will be considered in subsequent sections.

2. Variational condition

We shall calculate in this section the correct form of the functional derivative from
the variational condition (1.5). Let

D~ D+6D so that V=V, — kTP = const. Q.1
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Expand the logarithm in Eq. (1.7) into the power series, and substitute the relations (1.9)
and (2.1). Neglecting terms of the order of &%, we get

@roie =4 [da "~ [aner 1o +0000] [ anev tr e+ oran]
n=2 :

2.2)
and hence
5 f f wir P@ : .
ag = A | dr | dge {Go(q)0P(r)+ E(q)0F o(r)}, (2.3)
1-P(g)
where
a= T F) = 0¥+ e ~1] @4
20m% 7P ol '
Comparing Eq. (2.3) with Eq. (1.8) we find that
dag 1 ;
o)~ 2 kTo[C(r)+K(r)] 2.5y
with
P(QE(q)T] 2o
K() = [2Ag J dget” 1(??((:))] ;VOE:; , 2.6)

where the relation 6F, = 928g,, and the condition (2.1) kT3® = 6V, have been used.

The correction K(r) to the relation ‘(1.5) is thus proportional to the change in the
radial distribution function of the reference system evoked by the change in the division
of the whole potential into the perturbation and the reference parts. The functional deriv--
ative dgo/6V, is given by ia rather complicated expression and is connected with three-
and four-particle distribution functions. If, however, the approximation (1.4) is assumed
for go(r), we shall have

ogo(r) _
T V()

Q.7

Ogus(r; d od
—go(r)+kTgo(r)( v ))

od AGH

The change in the diameter 4 of the equivalent reference system, caused by the variation.
of the reference potential, should be rather small, because only the height of V(r), not
its range, is influenced by the changes in W(r), and, for r < d, V,(r) is already high. The:
second term of the right-hand side of Eq. (2.7) may thus be neglected, and the correction.
K(r) to the ACW relation (1.5) may be approximated by the expression

i K(r) = —go(r)D(r), 2.8y

with D(r) given by the facitor in the parentheses in Eq. (2.6). It is seen that for the hard-
-sphere reference system K(r) = 0 for r < d.
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3. Numerical results

The numerical calculations were performed for the Lennard-Jones potential
V(r) = 4e[(o/r)' > —(6/N°], 1o =%/20. (3.1)

The diameter of equivalent hard spheres was determined from the Barker-Henderson-type
condition [10]

d=— f{exp [— V(;)T +8] —1} dr, (3.2)

and the zeroth-order approximation for the radial distribution function of the reference
system:

8o(r) = g3(r) = exp {~Vo(n)/kT} (3:3)

was used. According to the ACW procedure, the perturbation W(r), calculated according
to Eq. (1.3), was kept fixed for 7 > d, and was varied for r < d. Four-parameter functions
(third-order polynomial in r, and its inverse) were used as trial functions. The calculations
were performed in two versions: in the first (C-1), only the perturbation W(r) was varied,
with Vo(r) kept constant, given by Eq. (1.2) with ¢ taken from the Lennard-Jones potential
(3.1), and in the second (C-2), both W(r) and ¥y (r) were varied simultaneously with ¥(r),
Eq. (1.1), kept constant. C-1 corresponds to the original ACW procedure, C-2 takes
into account the correction (2.8) due to the condition of the invariance of the original
potential. It is found that the global thermodynamic properties of the system are influenced
only slightly by the correction (2.8). This is understandable because the factor go(r) in K(r)
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Fig. 1. Comparison of the shapes of the optimalized perturbation‘ potential W(r), in the range
0 < r < d = 1 calculated from the original ACW condition (dashed line), and from the corrected condi-
tion (full line). £Tje = 1.15, po® = 0.1
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cuts off the whole correction rather quickly for diminishing r, so that K(r) gives noticeable
contribution to the integrands only in the narrow region just below d.

On the other hand, the correction (2.8) influences significantly the shape of the
optimalized perturbation interaction. We have found that, for all considered values of

W(T) 1\
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Fig. 2. The same as in Fig. 1, for go® = 0.5
wir & ,
kT T*=4{5 ¢*-03
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Fig. 3. The same as in Fig. 1, for go® = 0.3

temperature and density, W(r) for r < d is always attractive, when is determined from
the corrected variational condition C-2.1In contrary, the original ACW condition C-1, in
which ¥V, is kept constant, leads to different shapes of the best variational function W(r),
corresponding to attractive as well as repulsive correction forces. Typical examples are
shown in Figs 1—3, where the variational W(r) determined from C-1 are shown by dashed
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lines, and these determined from C-2— by full lines. This result seems to support our
earlier conjecture [8, 9] that the optimalization restores (partially at least) the natural
balance between repulsive and attractive forces, violated in the perturbation theories in
favour of the repulsion.
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