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Perturbation expansion of the equation of state of a binary fluid mixture, based on
two separate reference systems, is constructed. As the reference systems both pure components
are taken. This theory describes very well the mixture of hard spheres with nonadditive
diameters at high negative values of nonadditivity parameter. The theory is also extended
to include, as the third reference system, the interactions between different species only
(Widom-Rowlinson model). Perturbation corrections are given in this case by the overlap
of all three different types of interactions.- It is found that the inclusion of the third
reference system extends the range of applicability of the theory to smaller values of the non
additivity parameter.

1. Introduction .

Simple single-component fluids and binary additive mixtures are correctly described
by the perturbation theories of various types recently used [1, 2]. These expansions have
also been applied to binary systems of nonadditive hard spheres [3, 4] where the collision
diameter between spheres of two species is given by:

dap = 3 (dgq+dgs) 1+4), @

with 4 # 0 and d, 4, dgp being the diameters of spheres of 4 and B species, respectively.
The most studied systems have been these in which 4 is negative, over a range from -0.1
to —0.5 [3]. Comparison of equations of state obtained from the Monte Carlo calcula-
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tions, and from the conformal solution theory [5-8] or the theory of Leonard, Henderson,
and Barker [9] shows that none of the perturbation theories is useful at large negative
values of 4 (except when the density is very low).

The perturbation theories used so far for the description of binary systems are based
on the knowledge of one reference fluid being either a pure fluid or a binary system of
additive hard spheres. This work has been partly inspired by Henderson’s review article
[10], where the idea of a simultaneous expansion around both pure components of a mix-
ture is implied, although not stated explicitly. In the second Section we shall present an
expansion around two pure components of binary system. This expansion called by us the
expansion around a double reference system shall be applied to nonadditive mixtures of
hard spheres at very low A. In the third Section we shall propose an expansion about
a triple reference system, treating every type of pair interactions in the binary system as
one reference system. This approach shall be also applied to binary mixtures of additive
hard spheres when the diameter of one species is much greater than that of the second

species.

2. Expansion around two reference fluids

Let the mixture be composed of the particles of species 4 and B with the chemical
potentials u, and pg, respectively, and be kept in a constant volume ¥ and at a constant
temperature 7. Total potential energy &(r") is decomposed as follows:

B(r") = @ (r" )+ Pp(r"?)+ @ 45(r"), )

where r'4, ¥V® denote configuration spaces of species A4, B, respectively, and r¥ = ¢4 x pN®
We shall treat interactions between different species, @45, as perturbation imposed on
system with no interactions between different particles, for which potential energy is
&+ Pp. The interactions are assumed to be pairwise-additive,

@ = 2 ‘l’("ij)’ 3
2%}
and the obtained results will be applied to mixtures of hard spheres, with pair interactions :

. _ ‘OO, rij < d”
‘P("ij) = {0 Ty > dij’ 4)

d, ;; being the contact diameter between particles i and j, although he theory is applicable
to any interactions. For hard spheres with nonadditive diameters given by Eq. (1), the
perturbation ‘@45 vanishes identically for 4 = —1.

The grand partition function is given by:

‘NANB
w—g 5 ZAZBZ(TVN Np) G)
E = 4> Np)s
—JNA!NB e
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where summing is over variable nummber of particles A and B, z, and z; are the fugacities,
and Zy(T, V, N4, Np) is the canonical configuration integral:

Zy(To ¥, Ny Ny) = f dr¥dr™® exp (= Oy/kT). - (6)
1 4 oo B B N

Expanding Z around the: reference: system we get the followmg expression for the
equation of state:.

RY . PodV .. PosV. PasV - ;
kT~ kT . kT M7 2 - ™
hore SRR

 PoxV . INC ZRE v
©T =l Sg = In (Z _]7-' ZQ(T,Va NK)), (8)

Nk=0

for K = A or B. Here p,, represents the c"orreCtion to the total pfeéSﬁre of the mixture
due to the interactions between particles of different types, and is expressed by:

pasV

kT =~

111 <eXP ( QAB/ kT)>o . )]

The average is taken over the grand canonical ensemble of the unperturbed system; & ,+ &5,
For @45 pairwise-additive, we can express the correction p 45 as the series of averages of
products of Mayer functions fup

 Jap= exp (= @up/kT) - 1.

Up to second order in fyp thlS series is

?‘BV <z Zf>

+< Nz szj»o-‘—% [<1; 'szAB>o]2+0<<f:B>o>.‘ (0

Using the A-particle distribution functions (defined in the grand canonical ensemble).
of the reference systems

<NK>)" o0

h
nf)I}(rb AR rh) = ( v 0K

Z (Nx-1)! f xp (— Py KT)dr™", an
‘-’K K™
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where K = 4 or B, we get, according to Eqgs. (7) and (10), the following expresswn for the
equation of state

{’Z=P0AV PosV J'(l)

kT kT kT nOA(rl)n(l)(rz)fAB(rl, rz)dyldyz

+1/2 [ n§2(r)nS3 (25 1) un(r1s P2)fan(e, #3)dr dr,drs
+1/2 § n@(r1, PN us(P1s 1) as(ts, 13)dr drydrs
+172[[ nG(r1, r)nGrs rfan(rs r2)fap(r3, ro)dridr,drydr,
- j "&)(" 1)"815)(" 2)fap(rys #2)drdr, .f "E)IA)(" 3)”8?("4)&3(’ 35 Fa)drydry]. (12)

The distribution functions in Eq. (12) are functions of the activities. Conversion of
this expansion into a power series of average density, together with the thermodynamic
limit ¥ — o0, leads to the following result:

114 Pou V 12714
= Xy +Xxp —
NkT N kT NgkT

—X4Xp0 [fAB(r 12)dr;,

o)

—xszzsgz j‘fAB("12)fAB("13)h019("23)d"12d"23
-—xijgz j hoa(r13)fus(ri2)fun(rs2)dr zdrss
—3/2x,21x§93 j bhoa(ri)hop(raa)fup(Fi2)fap(Fas)dr s dr 230134, 13)

where ¢ = NJV, and hy, hop are the two-particle correlation functions of the reference
systems

1
hOK—_zn()K 1, K=A,B

Ok
being now the functions of partial densities gx = Ni/V instead of activities zg.
Equation (13) represents the second order expansion around both pure components
of the mixture. The higher-order terms depend on the three- and more-particle 'distribu-
tion functions of the reference systems.
The above calculation may be ’easily generalized for a multicomponent mixture.

3. An expansion about a triple reference system

The perturbation expansion presented in the previous Section is expected to fail for
the additive mixtures and for the mixtures showing a positive departure from additivity
(positive 4).

A perturbation expansion for a general mixture should take into account all types of
interactions in the same degree. Thus, a perturbation expansion for a binary system ought,
to within zeroth order, to include two fluids of pure components and a fluid in which there
are only interactions between particles of different species (the latter fluid is the model of
Widom and Rowlinson [11-15]). Terms of higher orders of this expansion will appear
from the overlapping of all three reference systems, i. e. from the overlapping of all inter-
actions in the mixture. In this Section we shall find such an expansion.
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' The derivation of the expansion is based on the known procedure of renormalization
of the diagrammatic expression for the virial expansion [16-21]. Performing this renor-
malization by the summatjon of the diagrammatic lines corresponding to pure components
of the mixture, we get two types of renormalized lines being the correlation functions of
pure components. Next, we perform the summations of diagrammatic substructures built
of the lines being only the Mayer functions of the pair interactions between the particles
of different types, which leads to the correlation functions 44X} of the Widom-Rowlinson
fluid. In this way we get the following expression for the equation of state, written up to
the two-particle correlation functions of the three reference systems’

Vi v V -
-t o ). ()

_xlzi'@ _f hop(ry, "z)h(gi% (rys Po)dr, — )”AQ j hoa(rys "z)ho A)("l, ry)dr,
—3/2xix§93 j“ho,«i("n P3)hop(¥s, ”4)ho B)("1s "3)]184?("2’ r)dridryds , 4

with A5} being a sum of all topologically different connected diagrams built of two root
points corresponding to particles of species I and K, and of f,p-lines only.

4. Numerical results

The results of the Monte Carlo (MC) simulations for mixtures of hard spheres with
non-additive contact distances were given by Adams and McDonald [3] for the mixture
of two identical species in equal concentrations. In this work we have performed the
calculation for such mixtures for 4 = —0.3, —0.4, and —0.5. The use of the approxima-
tion (13) requires the knowledge of the equation of state and of the radial distribution
function of one-component hard-sphere fluid. We have used the Carnahan-Starling equa-
tion of state [21] and the analytic formulas of Mandel et al. [23] for the radial distribution
function. The use of the perturbation expansion around triple reference system, Eq..(14),
requires the knowledge of the properties of the third reference fluid, for which D=
= @Ppp = 0, D457 0. The model of this kind was considered in the literature only for the
mixture of hard spheres: this is the so-called Widom-Rowlinson model (WR), described
by the parameters

dgy=dg=0, dyg=0>0.
According to Ref. [14], the pressure of this syster is given by the relations:

\s

;—T = 0a+0g+12(1—0.24285 n? +0.08714 7* — 0.03908 1°

+0.01969 1 —0.01145 #°+0.00785 #'* — ..)), 5)

C

:7 = 04+ 05+17(1—0.16190 #*+0.04665 n*—0.01721 #°

+0.00732 #® —0.00386 *°+0.00216 n*2— ..), (16)
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where p* and p° denote the pressurés calculated from the virial arid compressibility equa-
tions of state, and

n =205, (f2ne®) <1.7.

Egs. (15) and (16) predict different values of the pressure; hence we have used in our
calculations the Carnahan-Starling-type weighted average:

3poas = 2p"+p". an

Closed expressions for two-particle correlation functions of the WR model are not known,
and we have used the lowest-order approximations

AB ay ‘
thB)("p r) = f‘AB(";’ ’z)g

hGR(ry, "2) = XpQ _.‘.fAB(r‘II’:rS)fAB(r& ry)drs,

! hf)?)?("‘p "2) = X40 J'fAB("n r3)fA1_i('f3, ry)drs. 18)
TABLE I
PVINKT of the mixture of hard spheres with nonadditive' diameters, for x4 = xp = 0.5
- e — i_ = I = — — = —
0¥ MC BH1 | BH2 VDW1 VDW2 A4 MIX1 MIX2 Eq. (13) | Eq. (149
A= -03
02 | 131 1.30 1.33 1.34 | 1.33 E 1.21 1.30 1.33 1.36
0.4 1.80, 1.73 1.76 1.82 | 1.76 1.33 1.58 1.74 1.81
0.6 2.43 2.33 2.31 2.54 2.30 1.14 1.73 2.27 2.36
0.8 3.12 3.19 2.99 3760 2.94 2.94 3.03
1.0 4.25 4.46 3.74 525 ‘ 3.54 3.80 3.90
1.2 5.73 6.38 4.36 7.89 3.67 ' 4.93 5.03
14 | 780 | 940 | 423 | 1234 ‘ 1.95 6.26 6.57
— S e
4 =—-04
1.0 3;69 3.37 2.86 4.38 246 3.58 3.66
12 | 499 | 446 | 302 | 624 | 184 | 4.66 475
1.4 6.53 6.00 2.56 9.14 -0.79 | 5.99 6.09
A= —05
0.2 126 | 120 | 126 127 1.26 0.99 1.26 1.27 1.28
0.4 1.61 145 | 1.55 1.65 1.54 0.53 1.24 1.61 1.64
0.6 2.06 1.76 t1.8'7 2.16 1.82 —0,96 0.62 2.06 2.10
0.8 2.65 2.16 2.17 2.86 1.99 2.64 2.69
1.0 3.40 2.66\v 2.41 3.86 1.84 ‘ 342 | 347
1.2 4.61 3.32 247 5.31 -0.88 ‘ 445 | 453
1.4 592 4.17 2.12 7.45 -1.99 5.84+ 5.92+
1.6 | 8.10 5.31‘\,_ | .0.'9'6‘; ‘ 10.75 © . ~9.28 . 7.86% 7.94*
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The results are presented in Table I and in' Figs. 1 and 2, where o* is the reduced
density

o* = od?, (19)

d being the hard-sphere diameter. Together with results obtained from Egs. (13) and (14)
are presented, for comparison, the MC data and the results obtained by Adams and
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Fig. 1. The equation of state for the mixture of hard spheres with nonadditive diameters, for A= —03;
x4 =xp=05
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Fig. 2. The equation of state for the mixture of hard spheres with nonadditive diameters, for4 = —-0.5;

x4 =xp=0.5
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McDonald [3] from other perturbation theories. The data denoted by BH and VDW are
the results of two versions-of the conformal solution theory, where the reference system
is the one-component fluid of hard spheres of diameter dy, defined by

dp = 2 X% ;d3;, (20)
i,j )

with n = 1 for BH, and n = 3 for VDW version. The data denoted as MIX are obtained
from the perturbation theory with the reference system being the mixture of hard spheres
with additive diameters [9]. BH1, VDWI1 and MI1X1 versions are calculated from the
first order, BH2, VDW2 and MIX2 — from the second order perturbation expansion.

TABLE IT
PVINKT of the mixture of hard spheres with additive diameters, for x4 = xp = 0.5
o* . MC BH2 Eq. (14)
R=1.1
0.1 -1.239 1.239 1.284
0.3 1.96 1.964 1.921
0.5 3.17 3.260 : 2.968
R =153
0.1 1.220 1.219 1.261
0.3 1.85 1.869 1.910
0.5 3.04 3.037 2.780
R=30
0.3 1.739 1.696 1.772
0.5 ‘ 2.69 2.543 ) 2.597

We have performed also the calculations, based on the approximation (14) together
with Egs. (15)-(18), for theé mixture of hard spheres with additive diameters with R =
= dy/dg = 1.1, 5/3, and 3.0. The results are presented in Table 1I, together with the
MC results and results obtained from the Barker-Henderson theory [5, 7]. The reduced
density is defined here by:

oF = o(x,d}+xpd3). 21

5. Final remarks

The perturbation expansion around the double reference system, discussed in this pa-
per, leads— within the second-order approximation — to correct results for the equation of
state for nonadditive mixtures with high negative values of the nonadditivity parameter 4.
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The agreement with MC results is very good for 4 = —0.5 and we thus may expect that
the considered approximation will also be correct for 4 < —0.5, where, however, no
experimental data are available. There are small deviations at 4 = —0.4 and —0.3;
however, at 4 = —0.4 our results are still better than those obtained from other theories.
On the other hand, for A > —0.3, other theories lead to more correct results. The inclusion
of the third reference system, taking into account interactions between unlike particles,
improves the results for strongly nonadditive mixtures only slightly. On the other hand,
the theory based on triple reference system leads to relatively good results for additive
mixtures of hard spheres with very different diameters. However, the lack of the exact
correlation functions of the WR model makes impossible the full estimation of the useful-

ness of our triple-reference model.
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