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AN APPROACH TO TWO-DIMENSIONAL FLUIDS BASED ON
THE PERTURBATIONAL METHOD*
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The perturbational treatment, developed by Weeks, Chandler and Andersen for
ordinary bulk phases, is modified here to describe monolayer mobile adsorption.

1. Introduction

The theoretical description of two-dimensional fluids arises now great interest in
many investigators. This is because of its relation to the large class of interfacial phenomena,
which are now extensively investigated for their practical importance. The most popular
treatment of interfacial phenomena lies on a mental division of the whole bulk system
into three subsystems: two neighbouring bulk phases, and a two-dimensional phase
between them. Even with this simplification the problem remains complicated.

It appears, suprisingly, that the two-dimensional counterparts of many theories
developed for bulk phases involve a greater degree of complexity than their versions for
ordinary bulk phases.

- Thus, although Devonshire’s adaptation of the LID cell theory to the two-dimensional
case [1] has appeared as long ago as in 1937, no further progress can be noted up to the
sixties. The only interesting results was the two-dimensional analogue of the van der
Waals model [2].

The first theory advanced was the adaptation of the significant structure theory to
two-dimensional case [3, 4]. Actually, there is no analytical solution for Percus-Yevick
or Hypernetted Chain equations, but, meanwhile, greatly advanced solutions have been
obtained for two-dimensional system of hard discs. Thus Ree and Hoover [5] have obtained
a simple, compact equation of state for hard discs, using Pade’s approximation. Next,
Helfand, Frisch and Lebowitz [6] have constructed a two-dimensional counterpart of
the scaled particle theory.

* Dedicated to Professor Kazimierz Guminski on the occasion of his 70-th birthday.
#% Address: Zaklad Chemii Teoretycznej, Instytut Chemii, Uniwersytet im. Marii Curie-Skltodowskiej,
Nowotki 12, 20-031 Lublin, Poland.

(201)



202

Taking the results of Ree and Hoover, Bergman [7] has proposed a new theory,
which also takes attractive interactions in the system into account. Some further progress
is due to the work by Ross and Morrison [8], who accounted for the attractive interactions
more exactly, but made an error in treating repulsive interactions.

A first Monte Carlo calculations for such systems has been reported by Rosenbluth
and Rosenbluth [9], but soon extensive investigations of this kind have been performed
by Fehder [10], Tsien and Valleau [11], and Toxvaerd [12].

Most recent results along these lincs have been obtained by Rudzinski and Soko-
towski [13]. They have discovered the two-dimensional counterpart of the Unit Compres-
sibility Law [14], and on this basis they have performed summation of the virial expansion
for the two-dimensional compressibility factor. However, it is known that the unit compres-
sibility law holds satisfactorily only up to the region of liquid densities. So, it is not
suprising that the recent theory of Rudzinski and Sokotowski shows considerable devia-
tions from experiment (computer simulations) in the region of high densities.

Looking for some other theoretical possibilities, the authors have decided to apply
a typical perturbational procedure to the two-dimensional case. In this paper we are going
to present our preliminary results obtained by this method.

2. Theory
2.1. General considerations

One difficulty in applying the perturbational method here is the lack of an analytical
solution in the Percus-Yevick theory for hard discs in two dimensions. For this reason
the adaptation of such a convenient and rigorous theory as that by Verlet and Weis [15],
to two-dimensions is not possible.

The typical procedure in perturbational treatment [16, 17] is to consider the inter-

-molecular potential u(r), to be a function of a certain parameter 4, i.e., u(r) = u(r; A).

Then u(r; 1) is the intermolecular potential in our real system, whereas u(r; 0) is the potential
in some reference system, whose quantities will be further denoted by the subscript “0”.
The most convenient separation of u(r; A) into “reference” and “perturbed” parts is
u(r; A = uo(r)+uy(r),  uo(r) = u(r; 0), uy(r) = u(r; 1). M
This, however, is only a general method of separation; the details may differ for various
potentials. We shall further accept the method of separation introduced by Weeks, Chandler
and Andersen, and denoted here shortly as WCA method [17, 18].
Introducing the reduced quantities' ¢ = ¢ = 1, we can write the Lennard-Jones
potential in the form
u(r) = 4r~ 2 —r79). 2
According to WCA we have

uo(r) = {uu(r)+1 for r < r, = 21/°

for r > 7,

ul(r) { i for v < rm. 3)

uy (1) for r >r,
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The free energy of the system can be obtained in the usual way. Differentiating and inte-
grating the canonical partition function with respect to 4, we find the exact result

F(—Fy = Ezgjdlfdrul(r)g(i’; A). 4)

Here g(r; A) is the radial distribution function when the pair potential is-u(r; 4), F is the
dimensionless free energy, and subscript ““1” denotes the quantities for!our real system.
If attractive forces have little effected structure of the fluid, then g(r; 1) = go(r) and the 1
integration is trivial. Thus, within the accuracy to a. first perturbational term, the free
energy of the system is given by ’

Fi—F, = ['7@ Jd7“1(r)go(7')- . (%)

According to WCA we write the equation for the radial distribution function (rdf) go(r)
in the following form

go(r) = exp [—ﬂ”o(’")]J’hd("/dWCAS m, ©)

where y,q is the rdf for a hard disk system, extrapolated smoothly for r < dyca, 7 is the
packing fraction n = dgca 7o/4, and dyc, is the hard-disk diameter, which according
to WCA is to be calculated from the condition

T {exp [— Bug(r)] —exp [— Butsa(") ]} yaa(r/d; mdr = 0. @

0

In the above, uy, is the hard-disk potential. The last equation can be reduced by intro-
ducing functions [15]

(r|dyna = pfor,  p = oo(r/d—1D+(12Doy(rjd—1)"+ ... ®

into the following approximate relation

0,0
dwea = dga | 1+ — |, ®

20,

where, according to Barker-Henderson [19]
dgy .='6f {1—exp [~ Buo(r) J}dr (10)

and

L “ a )
d = J"(r/dBH- 1)? = {exp [ — Buo(r)1}dr. (11}
0
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The parameter ¢, can be obtained from Henderson’s equation [22], or, from the scaled
particle theory. Further o, can be very easily evaluated numerically. Table I brings the
values of the parameter 6, evaluated in various ways. Fig. 1 shows dyca as a function

TABLE I
The values of o, calculated by using different methods
7 5 e % %
0.36276 2.0362 2.0159 2.014 2.058
0.45345 2.683 2.589 2.556 2.683
0.54414 3.666 3.503 3.598 3.637

* From equation of Henderson oo = (1—79/16)(1—7)~2; Pfrom scaled particle theory
6o = (1—n/2) A—n)2; ¢ from Percus-Yevick rdf; 4 from Monte Carlo rdf [20].

of temperature. When # = 0.34, dyca and dgy are practically equal. (In three-dimensional
phases it is for 54, = 0.239 J21].)

When performing other calculations we accepted, for simplicity Fo = Fyg, Zo = Zyg,
which, obviously, is true only for rather dense phases: First, because this kind of investiga-

093

091

d/rm

089 b ™~

1 | 1 i
&2 o7 I 0.'9 17 r 13

Fig. 1. Temperature dependence of hard disk diamster. Solid line is the WCA criterion, and was calculated
for 7 = 0.54414. The dashed line is the Barker-Henderson criterion

tion was not performed so far; secondly, that we are interest here rather in dense fluids;
for moderate densities our recent method based on the unit compressibility law is quite
satisfactory.
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2.2. Hard disk systems

One key characteristic for perturbation treatments is an accurate equation of state
for the hard disk reference system. A few years ago Carnaham and Starling have obtained
this equation for three-dimensional systems. In a very similar manner Henderson has,
recently, obtained its two-dimensional counterpart [22].

e B (12)
(L=n)
When expanded into density powers, n, Eq. (12) yields
Z=142n+3.125*+4.25 3+ 5375 *+6.5n° + ... " (13)
whereas the exact virial expansion has the form [5]
Z = 1+2n+3.128 > +4.2579 5>+ 5.3408 n* +6.3744 ° +- . .. (14)

Eq. (12) is related to the following equation for the free energy Fyq in the system of hard
discs

9/8
jn =% In(1—n). (15)

hd =

2.3. Perturbational calculations

In order to perform appropriate calculations one has to know the values of the rdf
for the hard disk system. As far as we know, there is only one paper giving a few values
of it [20]. Therefore we have performed the appropriate calculations in our paper; their
results have appeared to be in good accordance with those particular values published

TABLE II
Radial distribution function for two-dimensional hard-disk system
n

rid 0.37 0.38 0.38 ‘ 0.40
o | | i
1.0 2.052 2.1025 2.155 2.209
1.2 1.501 1.523 1.539 ‘ 1.561
1.4 1.196 1.193 1.191 | 1.187
1.6 | 0.942 0.927 0918 | 0.904
1.8 0.869 0.859 0.849 0.839
2.0 0.909 0.907 0.905 ‘ 0.903
2.2 1.026 1.025 1.024 | 1.022
2.4 1.049 1.056 1.060 1.065
2.6 1.029 1.021 1.019 1.019
2.8 0.991 [ 0.986 | 0.098 0.972
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by Chao Ree and Ree [20]. As to details, we applied Lado’s [23] method; our results are
given in Table IL. Our radial distribution functions have been tabulated up to r = 6.0.
For the values n €[0.3, 0.7] the corresponding numerical values of virial coefficients .in
density expansion of rdf were evaluated for every r with a step 0.025, where the numer-
ical integrations were performed by Simpson’s method. The two-dimensional compressi-
bility factor was calculated numerically, according to the following equation

0
Z= Zhd+”51(F1_th)' (16)

The results of our numerical calculations are presented in Table III in comparison with
computer simulations. From the above comparison we may conclude that our perturbation
theory gives good results at temperatures which are not too low and good results even at

TABLE III

Comparison of the two-dimensional compressibility factors obtained through computer simulations
Zs [10-12], and from Eq. (16)

)

T 7 Zes ‘ Z (Eq. (16))
0.655 0.47124 0.585 ‘ 0.672
0.646 0.51051 0.834 0.869
0.654 0.62832 1.158 1.202
0.95 0.582 _ 3.05+0.05 | 3.31
0.95 0.423 2.35+0.1 | 1.98
0.95 0.636 4.80+0.07 5.02
1.436 0.496 2.325 2.21
1.645 0.4762 2.286 2.19
1.441 0.4993 1.591 1.52

the lowest temperatures which are relevant for compressed gases. The discrepancies with
computer simulation studies could arise from: neglect of the higher terms in Eq. (5),
assumption Z, = Zy,, errors in the Percus-Yevick estimate of the rdf for the hard disk
system.

2.4. Equation of state at low and moderate densities

In our previous paper [I13] we have postulated a new physical relationship — two-
-dimensional unit compressibility law. This relationship was verified by using theoretical
two-dimensional :virial coefficients for a Lennard-Jones gas. According to this law, in
conditions when the two-dimensional compressibility factor is equal to unity, the density
of two-dimensional mobile phase is a linear function of temperature

0= 0o(i=T/Ty). an

In the above Ty is two-dimensional Boyle temperature, and is a constant, which can be
determined from the second B,q, and third, B,y , two-dimensional virial coefficients
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according to the following relation

00 = lim D200
T—Tg (T/TB o 1)B(2d)1
This constant for the two-dimensional Lennard-Yones gas is equal to 1.1934. 1t is interesting
to note that it is half of its three-dimensional counterpart, which is equal to 2.397 [14].
Relationship (17) makes possible the summation of the virial expansion for the two-
-dimensional compressibility factor, since, the existence of relationship (17) allows us to
write the following interrelations for. the virial coefficients at Boyle temperature

B(Zd)l(TB) = Bg.)i)o(Td)a B(zd)z(TB) = B((Zl()l)l(TB)_%' B((ﬁ)o(TB) etc.,
Ak

BY), = ———— (Biaay)- (19)
SO T (T Ty)

(18)

Assuming that interrelations (19) are valid in some neighbourhood of Ty we arrive at the

following simple equation for the two-dimensional compressibility factor
o0

Z=1-mp Idrr {exp [— —uL,(r) ] = 1} . (20)
0 Ta(T|Ts— 0/ 00)
TABLE IV
Two-dimensional compressibility factors calculated according to Eq. (20)

T e Zes Za Z (Eq. (20)) Zay
1.441 0.4993 1.591 1.666 1.203 1.435
1.099 0.4993 1.383 1.378 1.089 1.234
0.880 0.4993 1.079 1.012 1.001 1.006
0.838 ) 0.4993 0.982 0.908 0.966 0.937
1.339 0.4645 1.380 1.480 1.154 1.317
1.145 0.4645 1.261 1.319 1.083 1.201
0.850 . 0.4645 0.886 0.857 0.931 0.894
0.815 0.4645 0.808 0.769 0.901 0.835
0.95 0.436 0.965 +0.023 .0.996 0.978 0.987
0.95 0.320 0.880+0.022 0.852 0913 0.883
0.95 0.245 0.891+0.033 0.830 0.882 0.856
0.7 0.436 ' 0.64 +0.005 0.357 0.802 | 0.579
0.7 0.320 0.566+0.003 0.377 0.750 0.563
0.7 0.245 0.603 +0.033 0.465 0.731 0.598
0.7 0.1568 0.7294+0.015 0.621 0.770 0.695
0.55 0.320 0.37540.058 —-0.274 0.622 0.174
0.55 0.245 0.349+0.047 —0.019 0.601 0.301
0.55 0.157 0.515+0.037 0.310 0.639 0.474
0.55 0.109 0.61510.032 0.509 0.695 : 0.602

_ Zes — computer simulations, the data from Refs. [10,11]; Za —results of Andrews [25];
Zay = (Z+ZA)/2-
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The last equation is the two-dimensional counterpart of Rudzinski’s equation for three-
-dimensional phases [24]. In Table IV the results are shown of our calculations, performed
according to Eq. (20), in comparison with those by other authors. It should be noted,
that the average value of Z, obtained from Eq. (20) and equation by Andrews [25] gives
excellent agreement with computer simulations.

2.5. Adsorption isotherm

Let us assume that the adsorption can be explained as a chemical equlibrium between
a three-dimensional Lennard-Jones fluid and a system of particles which vibrate inde-
pendently of each other, in the direction perpendicular to the surface and where the motion
on the surface is given by the equation of state for a two-dimensional Lennard-Jones fluid.
Then we have ’

Piaa(0@ay T) = BuaQaay T) = (T + (o, T), (21)

where p is the chemical potential as a function of the density and temperature. The subscript
ad stands for the subsystem of adsorbed molecules, and 3d for three dimensions. Next,
because we can treat the vibrations in the Einstein approximation, they only contribute to
the temperature-dependent but density independent term. Making use of the relation
dp/on = o, we obtain the Gibbs adsorption formula

1 ou B
—dp = (. > dP(ad)- (22)
o OPiay/ T

The last equation can be rearranged as follows
dp\ de
dlnpagy = B <T> — (23)
oe/ @
This expression must be integrated to obtain the adsorption isotherm. However, a problem
arises when we choose lower limits ps4 = p = 0 since both integrals become infinite. This

problem can be solved by invoking Henry’s law behaviour in this limit [26]. Thus,

e

o 4
In (p30)/Ky) = J [5—9 (pB)— ] _QE’ +1In g, (24)
0

where Kj; is Henry’s constant [26].
Substituting Eq. (16) into (24) and integrating by parts we have

P(sd)/KH = Ina(me(n, T), (25)

where

o(n, T) = exp {% [n(Fy —th)]} ' (26)
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and 944 is the adsorption isotherm for the hard-disk system. This isotherm corresponding
to scaled particle equation is given by

' 3n—2n2
Soat) = 7 e [('17_”;’2] @7)

The values of 34 are presented in Table V. Fig. 2 presents the adsorption isotherms calcu-
lated according to Eq. (25). Inspecting the theoretical isotherms it is evident that the pressure
needed to the coverage past 1 = 0.6 will be quite large even at low temperatures. Thus we

TABLE V
The values of P44 calculated according to Eq. (27)

] Ona

0.02 0.0217057
0.04 0.0472964
0.06 0.0776167
0.08 0.1137731
0.10 0.1569942
0.20 0.1569942
0.30 1.8628157
0.40 7.6827533
0.50 54.9811111
0.60 1281.0877
0.70 592283.76
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Fig. 2. Adsorption isotherms calculated according to Eq. (25). The long-dashed line was calculated at

T = 1, whereas the dash-dotted line at T = 0.6. The solid line denotes the Png
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can conclude that multilayer formation will occur in preference to further adsorption
into monolayer at # = 0.6. (It should be stressed that isotherms for other mobile models
show analogical behaviour [26].) The critical temperature for the model presented here
lies between 0.65 and 0.7. This value is in agreement with previous studies [11, 25].

3. Conclusions

We have examined the application of the perturbational method for two-dimensional
systems. Even without further improvement the theory gives a better description of the
two-dimensional fluids than any existing nonempirical theory. Cell models appear to
describe solids rather than fluids. Percus-Yevick or Hypernetted Chain theories of two-
-dimensional Lennard-Jones fluids are very complicated numerically. Unfortunately, lack
of analytical equation for radial distribution function of hard-disk system makes the
analytical solution for first-order perturbational term in free energy expansion impossible.
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