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In this note an expression for the low-temperature specific heat.in the unitary ensemble
is obtained by using the canonical partition function for a system of spinless fermions.
A comparison with the numerical results presented by Czerwonko and Denton, Miihl-
schlegel and Scalapino is given. '

Fréhlich [1] was the first to point out that the condition electrons in small metal
particles inhabit quantized energy levels. Kubo |2] shoved that the average spacing &
between the levels near the Fermi surface is just the inverse of the density of states for
the spin direction of the free electron gas

where V is the volume of the particle, m* is the effective mass of ‘the eleétron's, N is the.
number of free electrons in the particle, k¢ and Ep are the Fermi momentum and energy.
The spectrum of a particle will appear discrete so long as the level width is less than the
average spacing between the levels. This is satisfied when the average level spacing & is
much greater than the thermal energy kT, i. e., at low temperatures. Kubo argued that
small metal particles at low temperatures remain electrically neutral, lacking sufficient
energy to become charged. The constancy of electron number then implies that particles
can be categorized as being even or odd, depending on whether they contain total even or
odd numbers of conduction electrons. The even and odd particles are supposed to exhibit
different thermodynamics and paramagnetlc properties. Kubo considered, also, a system
of partlcles and solved the statistical problem treating the level structure as a random
variable with neighbor spacings following a Poisson distribution. Unfortunately, , the
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probability distribution used by Kubo is not suitable, since in this distribution we have
mutual “attraction’” between levels. On the other hand, he presented an effective method
of computing the partition function in a canonical ensemble.

The problem of averaging over ensembles of randomly separated energy levels has
been extensively studied for the case of level statistics in large nuclei. Dyson [3] discussed
this for various symmetries; he found three distinct ensembles. Gorkov and Eliashberg [4]
applied these to the case of small metal particles to calculate, among other things, the spin
susceptibility and the free energy for a vanishing magnetic field at low temperatures. For
small metal particles the orthogonal ensemble applies when spin-orbit coupling of the
conduction electrons is weak and time-reversal invariance holds. The symplectic ensemble
describes the case of strong spin-orbit coupling with time-reversal invariance. The unitary
enseble is used for the case of large spin~orbit coupling with no time-reversal invariance,
i. e., in large magnetic fields. The criterion that the field or coupling is strong or weak
is given by comparison with the average level spacing ¢.

Czerwonko [5, 6] obtained the extension of Kubo’s [2] and Gorkov-Eliashberg’s [4]
results. He derived the analytical and numerical formulas for specific heat and spin suscep-
tibility of a collection of small metal particles in two limiting cases: for kT' much greater
than & and for kT much smaller than 4, i. e., at high and low temperatures, respectively.
Independently, Denton, Miihlschlegel and Scalapino [7] have given, also, the extension
of the results from [2, 4] in the whole temperature range. They calculated the specific
heat and spin susceptibility by numerical methods and an interpolation scheme.

In this note we give an addendum to the papers [5, 6] after which one obtains the
concordance, in limiting cases for high and low temperatures, with results obtained later
in [7}.

To ecalculate the thermodynamics and paramagnetic properties for a collection of
small metal particles, one must use the appropriate partition function. For the magnetic
field H = 0 the statistical distribution of energy levels is described by the orthogonal
ensemble for weak spin-orbit coupling and by the symplectic ensemble as this coupling is
increased [3]. These ensembles have levels which are twofold degenerate, for the orthogonal
ensemble there are two spin directions and in the symplectic case there is the twofold
Kramers degeneracy. Therefore in these cases the partition function Z in the form given
by Kubo [2] is suitable
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‘where o is equal to 1 and O for particles with even arid odd N, respectively; & = % g upH,
g is the Lande factor of electrons, pg is the Bohr magneton, = (kT)~* and the magnetic
field H is set equal to zero. In the partition function the energy levels &, and ¢; are ordered
‘with respect to Fermi level &,, where g, referred to excited electrons above & and &
referred to holes created in the levels below &,. The ground-state energy is chosen te
give g, = 0.
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A using of the partition function Z in [6].for calculating low-temperature specific
heat in the unitary ensemble is not-appropriate, because the unitary ensemble describes
a system with a large spin-orbit coupling in a sufficiently large magnetic field [3]: This
should occur when %g ugH becomes of the order of the average level spacing 8. In this
case there is no longer any energy level degeneracy, since the previously twofold degenerate
levels with average level spacing J are split apart, which produces a system with average
level spacing &' = }J and there would be no longer any even-odd distinction. Thus, in
this case, the partition function for a spinless system is appropriate. .

Now we calculate the low-temperature specific heat by using the canonical partition
function for a system of spinless fermions, which is obtained from the Kubo partition

function Z
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If we calculate only the lowest order terms in the expansion of Z,, when the tempcratui’e
is much smaller than the average level spacing, then we obtain
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Performing the integration, we get

Zy=1+ Y e P p ..
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Hence the partition function Z, for the single level &; has the form
Zy = 14 #¥51

where ¢; = x,0" and g; = 0.
Denoting the statistical average over the specific heat as <{C,», we have

oo
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where R,(x) is the two-level correlation function. For the unitary ensemble R,(x) is approxi-
’ 2x2

mately given by for small x [8].

The last equation becomes
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The interval of integration can be reduced to (0, 1) by substituting y = e #*. Thus,
performing the integration, we obtain the low-temperature specific heat in the unitary

ensemble
. kT\®
(C,y = 87r2k< ) X (=DM = 5.98x102k(;5->,

where &' = 0. This result coincides which the one stated in [7]. -
. Finally, we note that two formulas in [5] for low temperatures are incorrectly caloulated
and must be exchanged. The formula (22) for the magnetization must read
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where
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Consequently -the spin susceptibility in the orthogonal ensemble (cf. (24)) for H = 0 is
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The formula (35) for energy must read

167*6 (kT
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and consequently the specific heat in the symplectic ensemble (cf. (36)) for H =0 is
, o (ETV
C, = 24i5x10%k 5

After the above remarks one obtains the complete concordance of [5] with the numerical
results given in [7]. “
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