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METASTABLE AND UNSTABLE STATES AT THE
NEMATIC-ISOTROPIC TRANSITION IN THE MEAN-FIELD
LATTICE MODEL*: **

By J. STECKI
Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw***
( Received March 18, 1977)

The course of the free energy and of the isotherms of pressure vs density near the
first order nematic isotropic transition is examined in detail for the mean field lattice model
in the Bethe approximation. It is shown how it so happens that no continuous pressure
density isotherms with Van-der-Waals loops may exist in this case for a first-order phase
transition between phases of different symmetry.

1. Introduction

In the transition region between liquid and vapor, the Van der Waals loop separates
the regions of stable vapor from stable liquid. The isotherm of pressure p vs density n = N/V
contains two metastable portions and an unstable portion inbetween but it is nevertheless
continuous. The transition between the disordered isotropic and ordered uniaxial phases
is also of the first order but the phases are of different symmetry [1] and therefore the
course of the free energy and its derivatives must be examined anew. In this note we record
briefly the behaviour of the simplest possible mean field model, namely the lattice model
in the Bethe approximation.

2. Working equations

.In this model [2-4] the molecules are simulated by an occupied row of r consecutive
sites. Lattice sites may be either occupied or empty. No multiple occupation is allowed.
For instance, a simple cubic lattice in d = 3 dimensions will allow 3 distinct orientations

* Dedicated to Professor Kazimierz Guminski on the occasion of his 70-th birthday.
** This work has been supported by the Institute of Physical Chemistry of the Polish Academy
of Sciences, coordinating the interdepartmental research program 03.10.01.
##x Address: Instytut Chemii Fizycznej PAN, Kasprzaka 44/52, 01-224 Warszawa, Poland.

(189



190

and the molecules are labelled according to their orientation. Thus in a system of V sites
with density # = N/V and volume fraction 6§ = rNJV the distribution of N molecules
between orientations o = 1,2,3 is specified by giving the fractions x, = N,/N with
Z x, = 1. For uniaxial ordering one of the x’s is large, say x;, and all others are equal
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In the iébt”iropié bhaée, all'x’s are equai,- j‘cd‘ 4 l/d The fre.ellen'e'rlgy of the éystem is consid-
ered to be a given function
F=FT,V,N,{x}) = N(T, n, {x,}) 2)

and the set {x,} is so chosen as to minimize F at constant T, V, N or f at constant T, n.
The model can be solved in the Bethe approximation [2-4] also with ‘attractive “isotropic’”
segment-segment interaction [4]; the basic features are clear already in the athermal
model corresponding to a hard-core ‘interaction between elongated molecules. Then

Bfn =Y n,logn,— 3 s,logs,+(1—6)log (1—0), 3)

where n, = rtx;; S, = lfdna, a=r—=1,a=1.., d. The isotropic phase at x, = d-!

.has a positive pressure
opf |
Br = ( ) 4)
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and a positive coefficient dp/on at all densities. At a given density, ffis also a function
of {x,}, which can.be visualized as a multidimensional surface. To consider only uniaxial
orderlng one exammes a one-dimensional cu* along the line where all x’s except x, are
equal to each other as indicated by Egs. (1). Along this line

<d(ﬂf)) = Bus~Bus, (5)
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where p, is the chemical potential of the component o defined in the usual manner
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Variations of f'with x,, are limited to curves of three types shown in Fig. 1. Each of them
has a minimum (or maximum) at x; = 1/d corresponding to the 1isotropic phase, infinite
and positive first and higher derivative at x;, = 1 correspondin g to the logarithmic diver-
gence of the chemical potential u;. Curves of similar type of free energy vs order parameter
were considered e.g. by de Gennes [5] and Landau [6].

The second derivative f;, at x .= d-! is positive at lower densities but at densities
higher than 040 = d/(r—1)-it is negative. For 0y, < 6 the isotropic phase is absolutely
unstable (with regard to variations in x). However, it still has positive pressure and com-
pressibility. It is only the (isotropic) orientational distribution that became unstable.
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The mesophase will exist at x; = x*, the local minimum of f, and-at high 6 it will
be stable The minimum x* will wander with density, so that the. pressure is equal to

K Bp = ‘ﬂln Ly +fi(dx/dm)] = n 2p¢7 | g o
but AR
0(8'Bnp) = _( n2Bf) 4+ n>Bri(dx*dn) N
and
dxjdn = — f’:7 . >
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Fig. 1. Free energy ff vs composition variable x4

If the mesophase is to be stable or metastable it is the full density derivative that must
be positive and not only the derivative at constant x. '

The first order phase transition may be located by the equality of the chemical poten-
tials and pressures of the isotropic phase at T, 7', x; = d~* and of the mesophase at
T,n", x; = x*T, n'").

There is no reason why the free energy should take equal values in coexisting phases;
at the transition, points like 1 and N belonging to two different curves: of type (b) of Fig. 1
will represent coexisting phases. The insert in Fig. 3 represents a typical Van der Waals
isotherm containing the well known continuous loop. We shall draw now the corresponding
p—n isotherm for the other case, represented in Fig. 2. The line marked “iso” represents
the pressure, or fp, of the isotropic phase; the line marked “meso’ represents the pressure
Bp(n, x*(n)) of the ordered uniaxial phase. Since f; = 0, the expression is common for
both cases. :

exp (Bp) = S171S,/(1—0). (10)
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The first order transition occurs at 1-Ny, with pressure p, and densifies B, and 0*.
At these points not only pressures but also chemical potentials are equal. The portion
of the line “iso” between 6, and 04, represents the metastable states of the isotropic phase;
the last portion for 6y0 < 0 < 1 represents the unstable isotropic phase. At the high-
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Fig. 2. A typical diagram of pressure fp vs density for an athermal (or supercritical) systen:
1
£p

Fig. 3. The region about the transition with the metastable and unstable states. The insert shows a continuous:
isotherm joining phases of the same symmetry

-density side, the mesophase is stable; as we lower the density, the free energy curve f{x,)
goes over from case (c) to case (b) (Fig. 1). The equilibrium composition x* decreases
with a decrease of density, dx*/df > 0 since £}, > 0 at x = x* and Sfan < 0. Then two.
things happen, at first sight independently. At some density the derivative dp/dn ceases.
to be positive; from then on the mesophase is absolutely unstable mechanically (see point S
in Fig. 3). The second event, in our model occurring always at an even lower density, is
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the disappearance of the minimum ME in (b), Fig. 1, and with it of any possibility of
a mesophase metastable or unstable. The condition f, = 0 or

x,8% = X,8¢ (11

leads to an algebraic equation which has 3 solutions at d-! < x; < 1. As we lower the
density, two solutions, marked MA and ME come to coincide with each other and with
the inflexion point I,; the “last” point x; of the curve x*(n) is a solution of

fo=fx=0. (12)
For lower 6 the two roots are complex. This density 87 is marked in Fig. 3. As we ap-
proach the phase at 0%, x7, dx*/dn becomes infinite because f,, vanishes. The unstable
meso isotherm p-n ends with an irfinite (negative) slope, at the last point marked L in
Fig. 3. There is no possible connection between the mesoline and the isoline in this figure.
In Fig. 3 we show an enlarged portion of Fig. 2; the dashed line is included for illustra-
tion — it gives the pressures at the unstable locus of f; = 0 marked max in Fig. 1.
The striking feature of the figure is its lack of symmetry. Whereas the point S may
be associated with the spinodal curve, which in the usual case is the locus of dp/on = 0
separating the (mechanically) metastable and unstable states, no such other point appears —
the isotropic phase is mechanically stable for all pressures and densities. The unstability
of the orientatienal distribution appears in the meso phase after other possibilities have
been exhausted — the first order phase transition and the mechanical unstability next —
and the isotherm is singular at this point with a negative infinite derivative. The unstability
of the isotropic orientational distribution is not to be seen 4t all on the isotherm of the
isophase; that f,. changes sign from positive to negative is a separate piece of information.
The interesting question is then how it was possible to observe Van-der-Waals loops
in Monte Carlo simulations of first-order phase transitions between phases of different
symmetry — it seems that the very existence of either one of them is to be justified separately.
For the nematic-isotropic transition discussed here, the number of points reported by
Vielliard-Baron [7] would be much too small to support an idea that the continuous loop
exists. 1f one choses for simulation a system of average density just slightly smaller that 03,
the result might depend (as it might elsewhere) on the input orientational distribution
before the true equilibrium corresponding to the isotropic phase is reached.
An important point is that for the states outside the “local equilibrium™ uy = pi,
= ... = g or f, = 0 the pressure is not really defined because fp = n*(0Bf/on), becomes

now
e[, 22
onjor Ox  dn

and the derivative dx/dn is not uniquely specified. In other words, consider the free energy
to be a functional of the orientational one-particle distritution function ny(r, @). When
varying the volume, the work pdV will depend on how n,(r, @) itself is going to vary with
the change of the average density. For two states — iso and meso — this variation is
uniquely specified: n,(r, @) at each density is to minimize the free energy. In our discrete
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model this is simulated by two values taken by. x; = d~! or x*(n). In other states the change
of ny with n is unspecified and the pressure p = —0F/0V cannot be defined without this
specification.

‘To illustrate these results we quote several numbers calculated from Eq. (1) for
7 =4,d.= 3. Here 0y = 1,1.c. the isophase is always stable or metastable. The coordi-
nates of the transition are.8;,, = 0.87943, 0 = 0.902, fp = 1.3707, x* = 0.84085. The
coordinates of the point S are § = 0.8788. fp = 1.264 and x* = 0.735. The coordinates
of the point L are 0] = 0.877455-0.000005, x = 0.698, fp = 1.274+1.275. The isotropic
phase has a pressure of this magnitude at @ = 0.866. It does not seem to be necessary
that the points L and S lie to the left of the iso density at the‘transition, but they do so
forr=4,d=3 .- :

Introduction of the temperature through the segment-segment attractive interaction
acting besides the hard-core volume exclusion does not alter the qualitative picture pre-
sented here.

This paper is dedicated to Professor K. Guminski to whom so many theoretical
chemists owe so much. Also the present author profited in the past from the advice, and
encouragement and discussions with Professor Guminski, which are gratefully acknowl-
edged on this occasion. '
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