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Model potentials constructed from selected terms of the multipolar expansion of
the interelectronic potentials are defined and applied to the calculation of the 115, 21S and
31S states of the helium atom. The convergence of the energies as a function of the number of
multipole terms in, the potential is discussed. The convergence patterns of the configuration
interaction expansions in the case of a given potential are studied.

1. Introduction

The great complexity in the ab initio procedures limits the applicability of all but a few
methods to small atoms. Thus simplified methods are desirable for many applications.
Among these an important role play the methods based on the use of model potentials,
effective potentials and pseudopotentials. For surveys of the rich literature in this field
we will refer to the recent papers of Durand and Barthelat [1], and Dalgaard and Linderberg
[2]. An interesting model approach, which consists in the modification of the interelectronic
repulsion term has been proposed by Callan [3].

In the present note we would like to-consider a model Hamiltonian for atomic systems
which also involves a modification of the potential, viz. the interelectronic potential is
replaced by a model potential constructed from selected terms of the multipolar expansion
of the standard potential. This potential allows for a considerable reduction of the computa-
tional effort involved in the evaluation of the matrix elements of the Hamiltonian. This
is due to the fact that in the course of evaluation of the most cumbersome integrals compris-
ing the inverse of the interelectronic distance one has not to consider infinite summations
and therefore the variety of radial integrals involved in the computation is strongly reduced.
The latter fact simplifies both their generation and storage.

There exist intimate relations between the present approach and the standard methods
of atomic structure calculations based on the use of selected configurations of one-elec-
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tronic states of definite angular symmetry, e. g. the configuration interaction (CI) method.
We discuss this problem in the following section. In order to shed some light on properties
of the model potential we present the energies obtained for ground state and two excited
states of the helium atom.

2. The model Hamiltonian

We shall assume that the' Hamiltonian for an N- electron atom may be written in.the
form

Zh+ va (1)
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where
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The repulsion potential for a‘pa‘ir of elgctrons is defined as
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where Q represents the set of k values involved in the summatlon, and r_ is the lesser and
r. the greater of 7; and r;. The tensor operators of rank k, C{(i), are deﬁned in terms of
the spherical harmonics [4]. The paranthesis denotes the scalar product. This expres-
s1on represents a selection of terms of the well known Laplace expansion of the interelec-
tronic repulsion opeérator, i. e.

o8 = 1jr @)

where Q denotes the set of all nonnegative integers, and r;; stands for the distance between
the electrons 7 and j. Because the individual terms in (3) are Hermitian operators, the
operator H? is Hermitian. We shall denote by E? the eigenvalues of H”

There exist ¢close connections between the method based on the use of the Hamiltonian
(1) and the standard approach in the case when the wavefunction is approximated by
a superposition of selected configurations of one-electronic functions. It may be easily
shown that for every choice of the configurations there exists a model potential of the type
defined in Eq. (3) which leads to results identical with those obtained for the exact inter-
electronic potential. The minimum set, Qc, is determined by the angular structure of the
atomic orbitals employed for the construction of the many-electron -basis functions
(configurations). For example, if only s and p orbitals are.involved, the minimum set is
Q = {0, 1, 2}. Tt-should be noted that the results of the Cl method are upper bounds
to the eigenvalues of both the exact Hamiltonian H = H? and H% :

The main difference between the two methods consists in the fact that instead of
restricting the number of configurations used for approximating the wavefunction we
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restrict the number of multipole terms in the interelectronic potential. In the former
approach one is usually interested in the convergence of the results as a function of the
types of angular terms in the wavefunction whereas in our case we investigate the con-
vergence as a function of the number of multipole terms in the model potential.

3. Applicati()n to the helium atom S-states

3.1. Method of calculation

For § states of two-¢lectron systems the space part of the exact wavefunction of the
i-th state may be written in the “/-expansion’ form [5, 6]

Vi(1.2) = Y, P11, r2)Pcos 0), &)
=0
where 0 is the angle between the position vectors of the electrons.

We have performed variational calculations for the model Hamiltonian using the CI
method. The approximate fiinction may be written as

o1(1,2) = Y, &(ry, r,)P(cos 6). O]
=0
The radial parts of the function (6) are expressed in terms of the exponential basis functions
as
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where c:? are linear variational parameters. The effectiveness of ihese exponential basis
functions has been demonstrated by Jacobs [6] and the present authors [7]. The structure
of the basis of the radial functions is similar to that described in [7]. The n values for
I'= 4, 5 have been obtained by extrapolating the optimal results for lower I’s obtained
in the latter paper. Special attention was payed to the assessment of the loss of numerical
significance caused by a possible approximate linear dependence. For all the expansions
discussed in the present work the energies turned out to be stable at least with the accuracy
of eight decimal digits. '

3.2.Results and discussion

We have considered the model potential (3) for the sets Q = {0, 1, 2, ... k}. In order
to get an idea about the “I-convergence™ [5, 7] of the energies for every k we computed
the energies for various expansion lengths 7 in (6). The results are collected in Tables T —III
for the states 1'S, 2'S and 3'S, respectively. The numbers «, v, d, ... in the symbol (us,
vp, wd, ...) denote the number of terms in (7) for [ = 0, 1, 2, respectively. In the last line
of each table we collected the limits to the energies Eili’ obtainable for functions of the form

(6) in the case of the standard potential (k = ). On can see from the columns of
the Tables that for a fixed angular structure of the basis functions the energies do
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not change monotonically when k increases. There seems to exist a minimum for the
case of k = 1. This fact causes that, at least in the case of low k values (k # 0), the
l-expansion energies for / = k are closer to the exact results than their counterpart
obtained when the standard potential is used (e. g., in the case of the 11S state the k = 1
sp-limit (7 = 1) to E? is —2.9013949, whereas the standard (k = o0) sp-limit is —2.900520).

The results displayed in the Tables I—1IIl allow one to get an idea about the /~con-
vergence of the energies for a given model potential (k = const). The covergence for
low k values is rather fast. This is confirmed by our extensive computations for k=1
and k& = 2. In this case we obtained the energies of the ground and excited states for
all the subsets of the basis sets (55s, 36p, 28d, 21f, 15g, 10h) characterized by increasing
| values. Tt turned out that for k = 1 and k = 2 the results practically reached their

TABLE 1
Variational E®&) energies for the 115 state of He
5 Basis sets
k .
45s (45s, 36p) (45s, 36p, 28d) (45,s,36p, 28d, 15f)
0 —2.8790237 —2.8790237 —2.8790237 --2.8790237
1 —2.8790237 —2.9013949 —2.9014488 —2.9014488
2 —2.8790237 - —2.9005071 —2.9030437 —2.9030637
3 - 2.8790237 —2.9005071 —2.9027743 —2.9034013
4 —2.8790237 ~2.9005071 —2.9027513 —2.9033001
5 —2.8790237 —2.9005071 —2.9027513 —2.9032864
6 —2.8790237 —2.9005071 —2.9027513 —2.9032843
00 —2.879028* —2.900520% —2.902774* —2.903307*
* Extrapolated results of Bunge [5].
TABLE IT

Variational E® energies for the 2!S state of He

Basis sets
i =
45s (45s, 36p) (45s, 36p, 28d) (45s, 36p, 28d, 15f)

0 —2.14419299 -2.1441930 ~2.1441930 —2.1441930
1 —2.14419299 —2.1458138 —2.1458170 -—2.1458170
2 —2.14419299 —2.1457622 —2,1459267 —2.1459279
3 —2.14419299 —2.1457622 —2.1459108 —2.1459496
4 —2.14419299 —~2.1457622 —2.1459094 —2.1459437
5 —2.14419299 —2.1457622 —2.1459094 —2.1459429
6 —2.14419299 —2.1457622 —2.1459094 —2.1459428.
v'e] —2.144197% —2.145766* | —2.145914% —2.145948*

* Extrapolated results of Jankowski et al. [7].
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TABLE III

Basis sets

kmax L
55s (55s, 36p) (55s, 36p, 21d) (55s, 36p, 21d, 10f)

0 —2.0607912. —2.0607912 —2.0607912 - 2.0607912

1 —2.0607912 —2.0612260 —2.0612269 —2.0612269

2 —2.0607912 —2.0612115 —2.0612567 —2.0612571

3 —2.0607912 —2.0612115 —2.0612522 —2.0612627

4 —2.0607912 —-2.0612115 —2.0612519 —2.0612612

5 ~2.0607912 —2.0612115 —2.0612519 —2.0612610

6 —2.0607912 —2.0612115 —2.0612519 —2.0612610

00 —2.060794* —2.061215% | —2.061256%* —2.061265*

* Extrapolated results of Jankowski et al. [7].
TABLE 1V
Estimates of the eigenvalues of the model Hamiltonian for low & values
1S 218 3's
k Percentage Percentage Percentage
Energy of B, Energy of E., Energy of E,

0 —2.879028 99.150 ~2.144197 99.917 —2.060794 g 99.977
1 —2.901453 99.922 —2.145821 99.993 —2.061230 99.998
2 —2.903068 99.978 —2.145932 99.998 —2.061260 99.999
o0 —2.903724* —2.145974%% | —2.061272%*

* Perkins [8].

** Winkler and Porter [9].

lower bounds for I = 2 and I = 3 respectively. The energies E? obtained for the full
basis set are displayed in Table IV. It seems that they differ from their exact counterparts
at most by 5- 10-.

The energies E? (for k # 0) are very close to the exact values obtained with the full
interelectronic potential (k = o). This is already true for the k = 1 results. The largest
difference is disclosed for the ground state. But even in this case one obtains 99.929
of the total energy or 959 of the correlation energy. The results for both the excited
states are considerably closer to the exact eigenvalues of the standard Hamiltonian then
for the ground states. In this case even the pure radial potential (k = 0) allows us to
approach the standard results within the accuracy just mentioned for the ground state.

4. Conclusions

The results obtained for the helium atom indicate that only a few terms of the
multipolar expansion of the exact interelectronic potential are essential in the compu-
tations of the energy of atomic systems. For the S states only the two first terms, k = 0, 1,
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are necessary to obtain accuracies within the range 99.922-99.998 9. We expect that the
same is true for other properties except perhaps the expectation values of 77, and (ry,).
In the case of our model potentials the CI method proved to be very fast convergent.
Tt turned out that the CI expansion may be limited to I = k+1 (or even 1 =k%).

"Before proceeding to applications of the modified potentials to larger atomic systems
more attention should be paid to the problem of the optimal choice of 2 for systems
comprising p, d or f electrons. In this case the number of term in Eq. (3) certainly increases
in comparison with the helium atom. However, the analysis of the existing CI results for
larger atoms indicate that it should be possible to define useful model potentials comprising
only a few multipolar terms.
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