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GREEN FUNCTIONS METHOD' FOR COLLINEAR
ATOM-DIATOM INELASTIC SCATTERING
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The Green functions method of Csanak et al. has been applied to calculate vibrational
transition probabilities for collinear atom-harmonic oscillator inelastic scattering. A finite
basis expansion has been used to express Green’s functions appearing in"the formulas for
‘the optical potential and the transition potential which have been calculated with all terms
of first and second order included. Integral Dyson equations with a non-local potential
have been solved. Transition probabilities are compared with those of Ficocelli
Varracchio et al.

1. Introduction

The aim of our work was to test numerically a certain ’approx‘\imation within the
scope of the Green functions method applied to the calculation of transition probabilities
in the process of collinear atom-diatom scattering.

The method which is based on the hierarchy of equations for field-theoretical Green’s
functions and on the decouphng technique of Martin and Schwinger has been proposed
and discussed in detail in the series of papers [1-4]. It was originally formulated for
electron-atom scatterlng Numerical tests for elastic [5] and inelastic {6, 7] electron-atom
scattering yielded quite good results though in the latter case the method was apphed
in the lowest order. Later the method has been generahzed to be applied to the case“of
atom-diatom scattering [8] where there is a need to consider two dlﬁ‘erent fields of atoms
and diatoms in the formalism of second quantization. s

Numerical tests for a one-dimensional model have been camed out by Ficocelli- Varrac-
chio et al. [9] giving satisfactory results. Our work which concerns the same model has been
performed independently of their's and differs from it in one significant : point we use the s'ziiﬁe
‘approximation from the point of view of the Green functions hierarchy and the decoupling
scheme but we made a finite basis expansion of some of the Green functions which the
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authors of [9] calculated exactly. Our version could be convenient for more complicated
models for which no exact calculations are possible and also for some models with many
open channels so it seems interesting to compare our results with those of [9].

2. Theory N

In this section weé will present the most important features of the theory and the basic
equations. A more detailed presentation can be found in paper [8] and a full exposition
of the theory in [1]. Let us consider a model of an atom of mass m scattered by a diatomic
molecule, ¥{x, y) being the interaction; x denotes the coordinate of the relative motion
and y the set of internal coordinates of the molecule.

Our aim is to calculate the elements of the 7-matrix which have the following form

Ty = | dxdx'pi(x) ¥ (x, %', ee)fi,”(x) €))
for elastic collisions and

Ty = 5 Axdxfi Vi, ¥, 4 (on+ e ))fiux) )

for inelastic collrswns -
ki, e, kg, & denote momenta and kmetlc energies in ‘the initial and final state,
tespectively. z is a- complex non-local energy-dependent optical potential which allows
one to treat the elastic process as a potential scattering, all eﬁ'ects like absorptlon of the
incoming flux, target polarization etc. being included in Z Vf . 1s a transition potential

discussed in detail in [9]. @ is a plane wave and f *) are solutions of the following equation
with incoming-wave (outgoing-wave) boundary conditions

1 .
(‘Ek+ T Vi)fk(x)— de' E (x, x', e)fu(x) = 0, 3
S 2m

. ' k?
k=k,k,, =
g * I & 2m
or in the integral form
Su®) = @)+ J dx'dx” Go(x, ', 22 3, (', ¥, ep)ful(x"). “

G, is a free-particle Green function with appropriate boundary conditions.

Exact expressions for ). and V_; are very complicated (Eqs. (17" and (27) of [8]).
Z contains a local first-order part which is the atom-diatom interaction potential averaged
in the non-perturbed initial (ground) state of the target. Further components of Y. are
of higher orders and can be expressed by means of the functional derivative of ), with
respect to an auxiliary potential and the one-particle Green function which satisfies
the following equation

(sk+ = vi) G, %, 50)— jdx" Z (5, ", )G, ¥y 0 = Sx—x).  (3)

:'V,'{r-,[can’ also be expressed by means of the derivative of Y .
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A nataral approximation is to include only the first-order component of Y. in the
functional derivatives. If we do that we obtain the following expressions for ¥, and V.,

T (x, X, 8) = S(x—=xWu(®)+ Y. Vi(0)G(x, X', s~ )Vofx"), (&)
n#i :

Vioi(x, ¥, 8) = —8(x—x)Vy(), (6

where ¥,{x) is a matrix element of V(x, y) between the initial and n-th excited state of
the target; We have set w,; = E,—E;. Eq. (5) turns out to be a good approximation for
the optical potential ¥ To get Y ready for calculations it is necessary to solve Egs. (3')
and (5) together so that self-cosistency is achieved. Eq. (6) is a crude approximation for
the transition potential. We can get a far better one if we use ), from Eq. (5) and not only
the first term of it to be variationally differentiated. We get then

Vf«i(xa x’> 8) = _5(x'—x,)Vfi(x)'_ Z Vf,,(x)G(x, x" 8+% (wfn—wnz;))r/r.li(x,)
n#i,f

— [V, ()= Vi) ]G(x, X', =5 )V x)+ Wi, 0

W, contains terms of third and higher orders which we will neglect in our computations.
In fact it turned out to worsen rather than to improve the results in [9]. One cause of it
could be that W; did not contain all terms of the third order.

The discussion of different terms of Eq. (7) has been presented elsewhere [4, 9].

To get the transition probabilities we have to solve self-consistently Eqs. (3°) and (5)
and then Eq. (4) for the incoming and outgoing wave. Finally we must calculate appropriate
matrix elements (Eqgs. (1), (2)).

It is convenient to represent the Green’s function in its spectral form ({1, 8]

G(x, x', ) = iim 2 gk(x)gk(xl)K ®)

. £
=0+ w—¢&r+1n

where the functions g, satisfy the equation

1
(sk+ o Vi) gi(x)— fdx' Z (x, ¥, e)gu(x’) = 0. ©)
m N

In the present calculation we made only one step in the procedure of solving (3') and (5):
we neglected the second-order term of Y. in Eq. (9) and got

(6k+ . Vi) gu(x) = Vi(x)gi(x) = 0. ' )
2m
Through (8) we constructed the Green function in the static approximation and after
inserting it into (5) we obtained the optical potential.
The main difference between our work and [9} is-that we have solved Eq. (%) in
a finite basis set while the authors of [9] used the exact solutions of (9') and were able
to perform the summation over k in (8) in an exact way.
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_ We are aware that in making our approximation we missed the imaginary part of ),
‘which was responsible for the absorption of the incoming flux and thus for inelastic scatter-
mg In fact the authors of [6] and [7] made a similar approximation for electron-atom
collisions and in spite of that they obtained good results.

3. The model and numerical calculations

* The model to which we will apply the theory is a collinear atom—harmonlc oscﬂlator
collision with an exponentlal repulsive potential. The model has often been used to test
approx1mate methods in collision theory [10-12]. By a suitable coordinate transformation
[11] the hamiltonian of our problem

H = e 5 g ol g o MR Crexp [ (o))
(10)

can be reduced to the form

1 62 —a(x~—y) __1 az 1.2
Ezax—zﬂ'ce gEr +3 ¥ an

which is the hamiltonian of a structureless particle with appropriately reduced mass m
colliding with the harmonic oscillator of unit mass and frequency. C is a constant on which
the exact transition probabilities do not depend and « describes the steepness of the
interaction.

The umit of energy is chosen to be the energy interval between the oscillatory states -
of the molecule. The potential matrix elements are V,,,(x) = Ve~ ", the elements V,,,
can be found in the paper of Rapp and Sharp [23].

The free-particle Green function (i.e. Green’s function for the operator

+ 1 4*\ .
S i
2m  dx? :

’ im ik|x—x'}
Go(x, x',ep) = — —e
k

k=7F \/ 2mek for incoming (outgoing) partlcle, respectively. As we have mentioned above,
Eq. (9) was solved in a finite basis; we applied the Jacobi diagonalization procedure

For our model for which there are no atom-diatom bound states the simplest basis
one could think of consisted of trigonometric functlons With C taken large enough so
that our functions should vanish practically for x < 0 they had the following form

2 . nnx
——sm—l— for xe(0, )

u(x) = (V!
0 for x <0and x> 1,
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where [ was a parameter which we could change. It seemed reasonable to take / smaller
than the whole range of integration of Eq. (3) which meant neglecting the polarization
effect outside the interval (0, /) though the static potential was still non-negligible there.

Once the solutions of Eq. (9’) had been obtained we were able to construct the optical
potential- and the main numerical problem was to solve the integral equation

fulx) = e~ %J‘dx’dx”ei"l’“—x’I I:Vii(x')5(x’—x")

N 2 Z 2 Vin(x')aqsus(x')aqpu,,(x")Vni(x")} 5, (12)
_ " Ep—8,— Wy
n¥#i q sp

where g, = Y a,(x) are finite-basis solutions of Eq. (9').

The integration of (12) for f§; and ff, ) was performed by means of the Sams and
Kouri technique [14] suitably adapted for kernels of finite order.

We performed our calculations for the case of “steep interaction” « = 0.3, m = %
(which are the parameters for He—H, collision). It seemed that namely in this case our
approximation should give the best results because the interval on which the polarization
effect was taken into account could be made smaller and our finite-basis expansion should
be more accurate. On the other hand our approximation can be used also for “adiabatic
interactions” (smaller ¢) in the cases in which the solutions do not oscillate too quickly
(small k;, kj).

In our calculations it sufficed to set Cequal to 25, the range of integration was taken
as 50. The summation over # contained for all energies at least one closed channel which
was more than necessary, as verified by Ficocelli Varracchio et al. The number of basic
functions was taken equal to 15 which seemed enough for relatively small values of I
Reducing this number to 14 and 13 did not affect the results for / = 15 (except for the
largest energies for which we got a small quantitative difference).

~As only the real part of the optical potential was taken into account, the probabilities
of elastic scattering calculated with the T-matrix from Eq. (1) should be equal to unity.
In our procedure of solving the integral equation there appeared waves distorted only
by the static potential, so we were able to reproduce the DW pesults'df Jackson and Mott[10]
without special effort. An examination of the asymptotic form of the functions-solutions
of Eq. (12) was also performed. The three tests mentioned above allowed us to check
our program and to choose parameters like the range and the step of integration.

‘The computational effort in our case was proportional to the number of basic functions
while in [9] it was proportional to the number of channels included in the summation
over n.

4. Results

We got relatively the best results for small / (I = 15). The 0—1 transition probabilities
are shown in Fig. 1 compared with those yielded by other methods. Our results are better
than those of Jackson and Mott who totally neglected the polarization effects. The prob-
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abilities calculated in our work are in fairly good agreement with those of [9] both for
the cases when V;,.; contained terms of first and of first and second order. Our points
in Fig. 1 show how the probabilities were changing when second-order terms in ¥V, ;
were being gradually taken into account.

We have also performed some tests for other values of the parameter / and we present
some of the results (Fig. 2). For / = 16 2/3 the results were generally in good qualitative
but not quantitative agreement with those for / = 15. For larger values of (I = 26 2/3)
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Fig. 1 Fig. 2
Fig. 1. 0—1 transition probabilities as functions of energy. SJ — accurate results of Secrest and Johnson,
P, — results of Ficocelli Varracchio et al. with only the first-order term included in V¢, P — with terms
of first and second order in V. ;, ® — results of Jackson and Mott, + — present calculations with only
the first-order term in V. ;, O — with terms of first and second order in ¥y, ;, 4 — without the contri-
bution of the final state correction
Fig. 2. 0—1 transition probabilities as functions of energy. Curves SJ, Py, Pasin Flg 1, O — present
calculations with terms of first and second order in Viciforl = 15, + — the same for / = 16 2/3, A — the
-same for / = 262/3

the results were worse and so were those for / = 30 (which we do not present here). There
was no even qualitative agreement between the latter two series of transition probabilities
as well as between either of them and the results of [9]. It seems due to the fact that our
expansion was too short for larger values of / (which was confirmed by a test). Calculations
with the basis significantly enriched would not be economical.

" Qur results for 0—2 transitions were much better than those of Jackson and Mott
(which were much too small) and do not differ more than by a unit (on a logarithmic
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scale) from those of [9]. Here the contribution of second-order terms was essential as
including only the first-order term yielded the results comparable with those of Jackson
and Mott. In Fig. 3 we show our 0—2 probabilities for different values of /. For all three
cases the qualitative behaviour is satisfactory.
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Fig. 3. 0—2 transition probabilities as functions of energy. ST — accurate results of Secrest and Johnson,,

Pt — results of Ficocelli Varracchio et al. with terms of first, second and partially third order included

in Vy. i, O — present calculations with terms of first and second order in Vyeifor I =15, + — the same
for / = 162/3, & — the same for [ = 26 2/3

As mentioned above, the exact results do not depend on the constant C. Our calcula~
tions for / = 15 and a larger C were also performed and the results were in good qualitative
but not quantitative agreement with the previous ones. This suggests that it would be more.
appropriate to use more sophisticated basic functions depending on C as a parameter.

5. Conclusions

The Green functions method has been tested on a simple collision model. The approxi-~
mation based on neglecting the imaginary parts of the second-order optical and transition
potentials and on expanding their real parts in a finite basis has been examined. The
quantitative results turned out to depend on the length of the interval on which the polari-
zation effects were taken into account. In the case when the basis seemed to be rich enough
our probabilities appeared to be better than those of Jackson and Mott and to be, in general,
in good qualitative agreement with those of Ficocelli Verracchio et al., however, for some
particular energies and transitions there were larger differences.
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Though our approximation can cause spurious fluctuations of some transition proba-
bilities it allows one to improve the DWA results and to take into account, however in
an imperfect way, some non-adiabatic polarization effects neglected by the Jatter method.
It seems that finite-basis approximations within the Green functions method can be used
in the future and should be examined in more detail. In particular one may employ more
sophisticated basic functions, try to achieve self-consistence of the Green functions and
optical potentials and include in some way non-Hermitian parts of optical and transition
potentials. Finite-basis expansions can replace more exact expressions for example when
~ exact DWA solutions are not available, when the self-consistency procedure mentioned
above is difficult to perform in another way or; for economical reasons, when the number
of open channels to be included is larger than the necessary number of basic functions.

On the other hand the approximation would fail in the cases in which there is a need
to expand rapidly oscillating functions on a large interval (i.e. when the mass and kinetic
energy of the projectile are large and the interaction potential is slowly decreasing).

We think that an atom-rigid rotator collision would be another even more interesting
model to continue testing approximations of the type presented here.

The author thanks Professor L. Wolniewicz for valuable remarks. He is also grateful *
to Mis. G. Staszewska and to Mr. M. Czubenko for providing him with some computer
subprograms and useful consultations.
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