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EFFECT OF PHOTON STATISTICS ON OPTICAL PARAMETRIC
GENERATION FROM QUANTUM NOISE
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In this paper the process of parametric generation from guantum noise with both
coherent pumping light, having the Poisson photon number distribution, and chaotic
pumping light, having the Bose-Einstein photon number distribution, is studied by means.
of simple quantum-mechanical model. It is shown that in the case of coherent pumping
light the complete depletion of the pumping wave is possible, whilst in the case of chaotic
pumping light the parametric process does not begin what is, probably, due to the bunching
effect in the chaotic light. Photon statistics of generated subfrequency waves sre treated
as well.

1. :'Introduction

Parametric generation of light in optically transparent nonlinear crystals is an effective
method for construction of continuously tunable lasers [1,2]. A spontaneous decay of
a pumping photon w; into two photons w, and w,

W3 = W+, (1)
will be a matter of interest in this paper.

The greatest emission occurs when phase matching condition for wave vectors 751, 752, ks

at w;, w;, w3, respectively, is also satisfied

ks = ky+k,. )
Furthermore, this process can be controlled by a resonator which considerably narrows
the spectral bandwidth of generated subfrequency radiations.

In this paper a three mode process will be considered only and the contributions of
other frequency components which do not strictly satisfy both the phase matching condition
(2) and corresponding resonance conditions will be neglected [1-4].

Assuming both amplitudes of subfrequencies w;, w, to be zero at the beginning of
the process, the parametric amplification can take place from quantum noise only and
the process is told to start from “zero-point”.
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From the point of view of phenomenological electrodynamics the parametric amplifi-
cation of the original “zero-point” is impossible because nonlinear quadratic polarizations
at w, and o, are equal to zero at the beginning of the process (see e.g. {4, 5)).

Parametric amplification of “zero-point” was studied by means of quantum-mechanical
perturbation theory in [6, 7]. The satisfactory results were obtained there when the noise
waves were assumed to possess the zero-point energy % hw; (i = 1, 2) per mode. However,
the result in [6] providing that the parametric amplification of quantum noise is indepen-
dent of the coherence properties of pump radiation is incorrect because the authors [6]
distook the incoherent state for the Fock state.

Recently the dynamics of parametric processes with three mode Hamiltonian has
been developed [8-12]. In some studies [8-10] the problem of three mode interaction is
solved in such a way that the pump mode is assumed to be quite intense and it can be
described classically. Such a method does not provide any results for the problem we
are dealing with. More detailed solution was obtained in [11, 12] using the short time
approximation. However, also this approximation seems not to be suitable for the descrip-
tion of parametric amplification of quantum noise because the average time necessary
for decay of the first pump photon is quite behind the above approximation.

In this paper we shall use the method proposed by Crosignani et al. [13] for treatment
of second harmonic generation which makes it possbile to find a closed solution for
average photon numbers. The parametric generation process from guantum noise will
be solved for two important cases, namely for coherent pumping light having the
Poisson photon number distribution and for chaotic pumping light having the Bose-
—Einstein photon number distribution (Gaussian light). In both cases it will be necessary
to admit the assumption that the statistics of pumping radiation is not changed in the
course of nonlinear process. Such assumption seems to be reasonable with respect to the
approximate results in [11, 12] and the results can be guaranteed for the beginning of the
nonlinear process at least provided the pump field to be quite intense.

2. The model Hamiltonian

We shall assume transparent nonlinear medium in which the phase matching condi-
tion (2) is satisfied. The Hamiltonian describing three mode nonlinear process can be
written in the form [8, 9]

H = h (0,4} a; +0,0; 6, +w3d3 as)+hgla;a,d3 +4i a3 as), 3)
where @; and a;" label the annihilation and creation operators relative to the i~th mode,
and g is the real coupling constant. The annihilation and creation operators fulfil the
commutation relations

La:, aj] = [ai+= a;-] =0; [as a;—] = 0yj. 1))

The equations of motion for the number operators n(f) = a;" (t)a,(t) can be obtained

using the Heisenberg equation of motion for any operator a;

da;
ih — = [a;, H]. 5
ih =2 = [a, H] ©
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Using the Heisenberg equations we obtain three photon number conservation laws
in the standard way

dn; dn, —0 ¢
dt dat (62)
i N B (6b)
at ' dt

an dn3

2 T3, 6
T (60)

The second order differential equations of motion for the number operators were
found in the form

2 2 2
d'ny _d'm, d"ns

Ear - T ar T 2g%(n3ny +nny—nyny+ns). M

The Eq. (7) has to be supplemented by initial conditions

n, (0> = n,(0)|yp> = 0; (®)

dn,
dt

{plna(0) 9> = na; <w w> =0, )]
t=0

which correspond to the initial absence of quanta at frequencies @, and w,; |y) representing
a state of the system.

The equation of motion for expectation value {n;(t)) = {(y|ns(t)|y) is immediately
obtained by means of equations (6)—(9) in the form

d2
2 (@) = 28”[3<n3(1) — K nz(O)n5(1)> — {na(D +{n3(0)]. (10)

Solving the equation (10), without the help of a hierarchy of equations for higher
order expressions of the kind {n5(¢)n}(0)), requires a suitable factorization assumption

on <ns(t)n3(0)y and <m3()) [13].
Two important cases will be treated in the following sections.

3. Parametric generation with coherent pumping light

First we shall consider the coherent pumping light with Poisson photon number
distribution. The factorization condition is to be taken in the form [14]

(n3() = <na(MD* +<ns(D), (11a)
<n3(0)) = n30+n3,0, (11b)
{n3(On3(0)> = <n3())ns,0+<ns(B). (11c)
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Supposing that the pump mode statistics is conserved in the course of the nonlinear
process we obtain the following second order non-linear differential equation for {(n5(¢)>
f 32

d
zi't'i (n3y(O) = 2g2[3(n3(t)>2 —2(2'13,0 +1) {n3(D) +(n3,0+ 1)na,o]- 12y

Taking into consideration the initial conditions (9) we obtain the solution of the
equation (12) in the form (see e.g. [15])

1 50
t= Zg j [(n30+1—x) (13, —.x)x]_”zdx, (13)
{na(t)y )

or it can be written in the form of the elliptical integral [16]

[(”3,0 +1) (n30— (n3(t)>)]1/2
n3,0(13,0 +1—<n3(1)>)

1 2 ; n3,0 2 -1z
t = e 0+1)1./.2 J{(l—x )[1— (n—3 0+1> x :I} dx. (14y

0

i Supposing that the pumping radiation is quite intense and it holds n3 o > 1, equation
(14) can be put in explicit form in a very good approximation as follows
(n3,0+1) sech® (n3/5gt)

[1+n5,0 sech® (n3/5g0)]
The last form describes the decrease of average pump photon number at w,; with.
the time.

The expressions for increase of average photon numbers of generated subfrequencies.
w, and w, can be found by means of conservation laws (6)

(15)

{n3(ODeon = N30

) “t h2 1/2 {
<n1(t)>coh = <n2(t)>coh s "3,0 an. (nS,O g)

. 16)
[1+4n3, sech? (n3/5g0)] (16)

It is obvious from (15) and (16) that the total conversion of pump radiation energy
at w; into energy of two subfrequencies w; and w, can take place as ¢ goes to infinity
provided that nz, o > 1.

From (15) or (16) we can compute the average time of the first photon decay

oo = e W h[l (H 1>]1/2' o an
TonotYco = — 75— Argtanh| & —_ o
phot/coh néfég 2 R3,0 ";{gg

The process of parametric generation gains its maximum efficiency in a time 7.
2 2

when 27 {n3(Tegr)) = — ) {n1,2(Tegr)) = 0. It was found

. Argcosh (n3/5
Tet = Té’gg =L (18)



83‘_9‘

One can see from (17) and (18) that the effective parametric generation needs relatively
long times in comparison to other nonlinear processes. For instance the average time of
the first pump photon decay {T,p,> given by (17) is comparable with the time in which
the majority of fundamental frequency wave photons can be converted in second harmonic
wave photons [13]. All the times describing the real processes of parametric amplification
of quantum noise fulfil the appropximate condition

il 2 0.9, (19

which is in contradiction with the approximation of short times used in [11] and [12].

5. Parametric generation with chaotic pumping light

Now we shall consider the chaotic pumping light having the Bose-Einstein photon
number distribution with the following factorization properties [14, 19]

{n3()y = 2ns(D))*+<{ns (1)), (20a)
(n30)) = 2n3 o+ ”3,0:3 (20b)
{na(Ons(0)y = <na(€)dms o1+ 711121+ <ns(2), (20¢)

where y,4(¢) is the second-order degree of coherence. We suppose the light to have the
Lorentzian shape of spectral line so that [14]

ly11(0)|? = exp (—2I'[t]), @y

where I" denotes the spectral half width. _
Inserting the relations (20) in the differential equation (10) we get following second-
-order non-linear differential equation for {ns(¢))

2

d .
P (ns(t)y = 28%{6<n3(HY* —2[2n5 o(1 + |71, +1] (s> +Rns 0+ Dns o). (22)
By rather simple procedure (see e.g. [15]) regarding the initial conditions (9) we

obtain from (22) the following non-linear integro-differential equation which is of the
first order with respect to the time derivative of {ns(t))

d 2
(‘Jt' <"3(t)>) = 4g? {2<"3(t)>3 —(2n3,0+1) {n3(DY +(2n3,0+ Dy o{n3 (D)

d(ﬂs(t »

—2n3 o —4ns, f (ntyy 2 Im(t)lzdt} | 23)

e e .. d
For the real process of parametric noise amplification the first derivative s {ns(t)>
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must be negative in-certain time interval at the beginning of the non-linear process. Thus
we can suppose that the following relation holds in a time interval (0, £):

—ngtyy KD 238 24)

Making use of the well known mean value theorem for the definite integral we can
express the integral on the right-hand side of (23) as follows

-

d
[ 5 o = 5 (cnsp* -, @s)

9

where 0 <a << 1. .
Then the equation (23) takes the form

d 2
(E §"3(t)>) = 4g°[Cns(D> = n5,0]

x[2n3(0))*—(2n3 ga +1) {ms(0) +2n5 o(1 - a)]. (26)

First we shall assume that the ;process of parametric amplification of quantum noise
does start -and that the pumping radiafion has extremely high degree of coherence so that
it holds- |y, {(£)]? = 1 at the beginning of the process.

The solution of (26) for this case can be obtained laying ¢ = 1 in the following form
(see e.g. [15] and [16])

(n3,0+2) sech? (2'*n312q1)

27
L1y sech® 212n33gn]

<n3(t)>cham = n3,0
From the last expression the average time of the first pump photon decay for chaotic
pumping light can be computed

2] 08 -

1 -
$Topoenaet = 5173, 172, Atgtan h[ ~ nilsg’

3,0

whlch is approx1mate1y equal to the {TonotPeon giVEN by an.
For the equation (26) to have a real solution the second term on the right-hand side

of (26) must be negative or equal to zero, i.e.
[2<ns(6)>*> — (2n3 00+ 1) <”3(t)> +2”3 ol —a)] 29

Assuming that the last condition must be fulfilled at the beginning of the process at
Teast, though in the time before the first pump - photon will be decayed, we obtain the
existence condition for realization of parametric generation process

. 1
1- — <a< (30)
4n; o
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Now we shall introduce the following average quantities for the decay of the first

photon
Ky 1
= 1. ] TR e ——————
@mmm—wﬁz,(‘m lm T @)

Making use of the last expressions the integral on the rlght-hand side of (23) can
be computed for 1 = (Tpnet)choat 88 follows

{Tpnotenaot

d<{n ;
L JeC S S

By means of (25), (28), (30) and (32) and using Taylor expansion of exp (—2I'(Typec) choat)
we can find the final form of existence condition for realization of parametric generation
process from quantum noise with chaotic pumping light

1 25 )2
o = o i, (33a)
2r g
where 7., = 1/2 I' labels coherence time of pumping radiation.
The parametric generation process does not start when the reverse condition holds

L @ny)'?
Ten = o= S @na0) © (33b)
r g

Condition (33a) can never be fulfilled in real cases.

There is an apparent inconsistency in our treatment. Namely the right-hand side of
equation (22) is not equal to zero when the solution of (26) is a constant {n3(f))> = n3,0-
This apparent inconsistency is a consequence of the fact that we have neglected the changes
of {ns(¢))> less than one in our considerations.

5. Fourth-order statistics of generated subfrequency radiations

There are two other Ways of deriving equations (12) and (22) there. Either it is possible
to take directly the average of equation (7) or to derive equations for n, and n, and to
take average of them similarly to the equation (10) for {n;(¢)>. Both the ways certainly
require a suitable assumption on statistics of generated subfrequency radiations. When
suitable factorization rules are found, both the ways have to provide exactly the same
results as in Sections 3 and 4. Strictly speaking this method is not fully correct from
mathematical point of view, however, it leads to the good results.

The following results were found by means of the above mentioned method.

(i) For the case of parametric generation with coherent pumping light having Poisson
statistics the generated subfrequency radiations obey the following factorization relations
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for photon numbers

(D)) = <n30) = {ny(On(0) = (ny (0D +<ng, (O, (34a)
n3(O)ny 2(8)) = nj 00y () +<ny (), (34b)
{na(Ong (1)) = {n3(D)) <ny,2(0>. (34c)

The factorization relations (34) provide that both generated subfrequency radiations
are coherent ones as well. At the same time the term describing the quantum fluctuation
noise is missing in (34c), that mecans the pumping radiation is not correlated to both
subfrequency radiations and it behaves with respect to them as a classical one.

(i) For the case of chaotic pumping light with Bose-Einstein statistics, when admitting
the academical chance of parametric noise amplification, both generated subfrequency
radiations would obey the following factorization relations for photon numbers

i) = 03Dy = {ny(Ony (D) = 2(ny,, (DY +<ny 2B, (352)
{n3(0)ny () = 22~ |y11(O1*]ns,0<n1,2(0)> = 2[1 — |y 11 (DI In3 0 + {n1,2(0),  (35b)
<na(Ony o0 = 2|y (D12 (ns(6)) <n1,2(t)>—2[1—[?11(t)12] <na())2. (359

That is clear that the generated subfrequency radiations would possess Bose-Einstein
statistics, i.e. they are also chaotic ones. The correlation relations between the pump
radiation and the generated subfrequency radiations, respectively, given by (35b) and
(35c), are rather complicated and their detailed discussion would be rather difficult as
far as the explicit solutions for {ns(f)> and < ,(¥)) were not known.' We shall not
deal with such a discussion because it is not important from practical point of view.

6. Conclusion

From the above treatment it follows that the process of parametric generation from
quantum noise can start with coherent pumping radiation having the Poisson statistics.
In this case both generated subfrequencies are also coherent ones with the Poisson photon
number distribution and the total energy conversion is possible provided that n; ¢ > 1.

Parametric generation process cannot start from “zero point” when pumping radiation
is chaotic with Bose-FEinstein statistics as condition (33a) cannot be fulfilled for real
chaotic radiations. The impossibility of parametric generation with chaotic pumping
light is, probably, due to the bunching effect in chaotic light that evidently acts against
the decay of pump photons, whilst in the case of the second harmonic generation the
bunching effect influences favourably the nonlinear process [17].

The author would like to thank Dr. J. Pefina for stimulating and helpful discussions.

! The apparent atibunching effect following from (35c¢) if ¢ tends to infinity is not a real one because
for this case {m, »(r)> have to be equal zero.
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